

Praise for Cloud Native DevOps with Kubernetes

 Cloud Native DevOps is an essential guide to operating today’s distributed systems. A

super clear and informative read, covering all the details without compromising

readability. I learned a lot, and definitely have some action points to take away!

 —Will Thames, Platform Engineer, Skedulo

The most encompassing, definitive, and practical text about the care and feeding of

Kubernetes infrastructure. An absolute must-have.

 —Jeremy Yates, SRE Team, The Home Depot QuoteCenter

I wish I’d had this book when I started! This is a must-read for everyone developing and

running applications in Kubernetes.

 —Paul van der Linden, Lead Developer, vdL Software

 Consultancy

This book got me really excited. It’s a goldmine of information for anyone looking to use

Kubernetes, and I feel like I’ve levelled up!

 —Adam McPartlan (@mcparty), Senior Systems Engineer,

 NYnet

I really enjoyed reading this book. It’s very informal in style, but authoritative at the same

time. It contains lots of great practical advice. Exactly the sort of information that

everybody wants to know, but doesn’t know how to get, other than through first-hand

experience.

 —Nigel Brown, cloud native trainer and course author

Cloud Native DevOps with

Kubernetes

 Building, Deploying, and Scaling

 Modern Applications in the Cloud

 John Arundel and Justin Domingus

Beijing Boston Farnham Sebastopol Tokyo

Cloud Native DevOps with Kubernetes

by John Arundel and Justin Domingus

Copyright © 2019 John Arundel and Justin Domingus. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are

also available for most titles (http://oreil y.com/safari). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreil y.com.

Acquisitions Editor: Rachel Roumeliotis Developmental Editors: Virginia Wilson and Nikki McDonald

Production Editor: Nan Barber

Copyeditor: Kim Cofer

Proofreader: Amanda Kersey

Indexer: Judith McConville

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

February 2019:

First Edition

Revision History for the First Edition

2019-01-24: First Release

See http://oreil y.com/catalog/errata.csp?isbn=9781492040767 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Cloud Native DevOps with Kubernetes,

the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.

While the publisher and the authors have used good faith efforts to ensure that the information and

instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility

for errors or omissions, including without limitation responsibility for damages resulting from the use of

or reliance on this work. Use of the information and instructions contained in this work is at your own

risk. If any code samples or other technology this work contains or describes is subject to open source

licenses or the intellectual property rights of others, it is your responsibility to ensure that your use

thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement of editorial inde‐

pendence (http://www.oreil y.com/about/editorial_independence.html).

978-1-492-04076-7

[LSI]

Table of Contents

Foreword by NGINX. xix

Foreword by Ihor Dvoretskyi. xxi

Preface. xxiii

1. Revolution in the Cloud. 1

The Creation of the Cloud 2

Buying Time 3

Infrastructure as a Service 3

The Dawn of DevOps 3

Nobody Understands DevOps 5

The Business Advantage 5

Infrastructure as Code 6

Learning Together 6

The Coming of Containers 7

The State of the Art 7

Thinking Inside the Box 8

Putting Software in Containers 8

Plug and Play Applications 9

Conducting the Container Orchestra 10

Kubernetes 11

From Borg to Kubernetes 11

What Makes Kubernetes So Valuable? 11

Will Kubernetes Disappear? 13

Kubernetes Doesn’t Do It All 13

Cloud Native 14

The Future of Operations 16

vii

Distributed DevOps 17

Some Things Will Remain Centralized 17

Developer Productivity Engineering 17

You Are the Future 18

Summary 19

2. First Steps with Kubernetes. 21

Running Your First Container 21

Installing Docker Desktop 22

What Is Docker? 22

Running a Container Image 22

The Demo Application 23

Looking at the Source Code 23

Introducing Go 24

How the Demo App Works 24

Building a Container 25

Understanding Dockerfiles 25

Minimal Container Images 26

Running docker image build 26

Naming Your Images 27

Port Forwarding 27

Container Registries 28

Authenticating to the Registry 28

Naming and Pushing Your Image 28

Running Your Image 29

Hello, Kubernetes 29

Running the Demo App 30

If the Container Doesn’t Start 30

Minikube 31

Summary 31

3. Getting Kubernetes. 33

Cluster Architecture 33

The Control Plane 34

Node Components 35

High Availability 35

The Costs of Self-Hosting Kubernetes 37

It’s More Work Than You Think 37

It’s Not Just About the Initial Setup 38

Tools Don’t Do All the Work for You 39

Kubernetes Is Hard 39

Administration Overhead 39

viii | Table of Contents

Start with Managed Services 40

Managed Kubernetes Services 41

Google Kubernetes Engine (GKE) 41

Cluster Autoscaling 42

Amazon Elastic Container Service for Kubernetes (EKS) 42

Azure Kubernetes Service (AKS) 43

OpenShift 43

IBM Cloud Kubernetes Service 43

Heptio Kubernetes Subscription (HKS) 43

Turnkey Kubernetes Solutions 44

Stackpoint 44

Containership Kubernetes Engine (CKE) 44

Kubernetes Installers 44

kops 45

Kubespray 45

TK8 45

Kubernetes The Hard Way 45

kubeadm 46

Tarmak 46

Rancher Kubernetes Engine (RKE) 46

Puppet Kubernetes Module 46

Kubeformation 46

Buy or Build: Our Recommendations 47

Run Less Software 47

Use Managed Kubernetes if You Can 48

But What About Vendor Lock-in? 48

Use Standard Kubernetes Self-Hosting Tools if You Must 49

When Your Choices Are Limited 49

Bare-Metal and On-Prem 49

Clusterless Container Services 50

Amazon Fargate 50

Azure Container Instances (ACI) 51

Summary 51

4. Working with Kubernetes Objects. 53

Deployments 53

Supervising and Scheduling 54

Restarting Containers 54

Querying Deployments 55

Pods 55

ReplicaSets 56

Maintaining Desired State 57

Table of Contents | ix

The Kubernetes Scheduler 58

Resource Manifests in YAML Format 59

Resources Are Data 59

Deployment Manifests 59

Using kubectl apply 60

Service Resources 60

Querying the Cluster with kubectl 63

Taking Resources to the Next Level 64

Helm: A Kubernetes Package Manager 64

Installing Helm 65

Installing a Helm Chart 65

Charts, Repositories, and Releases 66

Listing Helm Releases 67

Summary 67

5. Managing Resources. 69

Understanding Resources 69

Resource Units 70

Resource Requests 70

Resource Limits 71

Keep Your Containers Small 72

Managing the Container Life Cycle 72

Liveness Probes 72

Probe Delay and Frequency 73

Other Types of Probes 73

gRPC Probes 74

Readiness Probes 74

File-Based Readiness Probes 75

minReadySeconds 75

Pod Disruption Budgets 76

Using Namespaces 77

Working with Namespaces 78

What Namespaces Should I Use? 78

Service Addresses 79

Resource Quotas 79

Default Resource Requests and Limits 80

Optimizing Cluster Costs 81

Optimizing Deployments 82

Optimizing Pods 83

Vertical Pod Autoscaler 84

Optimizing Nodes 84

Optimizing Storage 85

x | Table of Contents

Cleaning Up Unused Resources 86

Checking Spare Capacity 88

Using Reserved Instances 88

Using Preemptible (Spot) Instances 89

Keeping Your Workloads Balanced 91

Summary 92

6. Operating Clusters. 95

Cluster Sizing and Scaling 95

Capacity Planning 96

Nodes and Instances 98

Scaling the Cluster 101

Conformance Checking 102

CNCF Certification 103

Conformance Testing with Sonobuoy 104

Validation and Auditing 105

K8Guard 106

Copper 106

kube-bench 107

Kubernetes Audit Logging 107

Chaos Testing 107

Only Production Is Production 108

chaoskube 108

kube-monkey 109

PowerfulSeal 109

Summary 110

7. Kubernetes Power Tools. 111

Mastering kubectl 111

Shell Aliases 111

Using Short Flags 112

Abbreviating Resource Types 112

Auto-Completing kubectl Commands 113

Getting Help 113

Getting Help on Kubernetes Resources 114

Showing More Detailed Output 114

Working with JSON Data and jq 114

Watching Objects 115

Describing Objects 116

Working with Resources 116

Imperative kubectl Commands 116

When Not to Use Imperative Commands 117

Table of Contents | xi

Generating Resource Manifests 118

Exporting Resources 118

Diffing Resources 119

Working with Containers 119

Viewing a Container’s Logs 119

Attaching to a Container 121

Watching Kubernetes Resources with kubespy 121

Forwarding a Container Port 121

Executing Commands on Containers 122

Running Containers for Troubleshooting 122

Using BusyBox Commands 124

Adding BusyBox to Your Containers 124

Installing Programs on a Container 125

Live Debugging with kubesquash 125

Contexts and Namespaces 126

kubectx and kubens 128

kube-ps1 128

Kubernetes Shells and Tools 129

kube-shell 129

Click 129

kubed-sh 130

Stern 130

Building Your Own Kubernetes Tools 130

Summary 131

8. Running Containers. 133

Containers and Pods 133

What Is a Container? 134

What Belongs in a Container? 135

What Belongs in a Pod? 136

Container Manifests 136

Image Identifiers 137

The latest Tag 138

Container Digests 138

Base Image Tags 139

Ports 139

Resource Requests and Limits 139

Image Pull Policy 140

Environment Variables 140

Container Security 141

Running Containers as a Non-Root User 142

Blocking Root Containers 142

xii | Table of Contents

Setting a Read-Only Filesystem 143

Disabling Privilege Escalation 143

Capabilities 144

Pod Security Contexts 145

Pod Security Policies 145

Pod Service Accounts 146

Volumes 147

emptyDir Volumes 147

Persistent Volumes 148

Restart Policies 149

Image Pull Secrets 149

Summary 150

9. Managing Pods. 153

Labels 153

What Are Labels? 153

Selectors 154

More Advanced Selectors 155

Other Uses for Labels 156

Labels and Annotations 156

Node Affinities 157

Hard Affinities 158

Soft Affinities 158

Pod Affinities and Anti-Affinities 159

Keeping Pods Together 159

Keeping Pods Apart 160

Soft Anti-Affinities 161

When to Use Pod Affinities 161

Taints and Tolerations 162

Pod Controllers 163

DaemonSets 164

StatefulSets 165

Jobs 166

Cronjobs 167

Horizontal Pod Autoscalers 167

PodPresets 169

Operators and Custom Resource Definitions (CRDs) 170

Ingress Resources 171

Ingress Rules 172

Terminating TLS with Ingress 172

Ingress Controllers 173

Istio 174

Table of Contents | xiii

Envoy 175

Summary 175

10. Configuration and Secrets. 179

ConfigMaps 179

Creating ConfigMaps 180

Setting Environment Variables from ConfigMaps 181

Setting the Whole Environment from a ConfigMap 183

Using Environment Variables in Command Arguments 184

Creating Config Files from ConfigMaps 184

Updating Pods on a Config Change 186

Kubernetes Secrets 187

Using Secrets as Environment Variables 187

Writing Secrets to Files 188

Reading Secrets 189

Access to Secrets 190

Encryption at Rest 190

Keeping Secrets 191

Secrets Management Strategies 191

Encrypt Secrets in Version Control 191

Store Secrets Remotely 192

Use a Dedicated Secrets Management Tool 193

Recommendations 193

Encrypting Secrets with Sops 194

Introducing Sops 194

Encrypting a File with Sops 195

Using a KMS Backend 196

Summary 197

11. Security and Backups. 199

Access Control and Permissions 199

Managing Access by Cluster 199

Introducing Role-Based Access Control (RBAC) 200

Understanding Roles 201

Binding Roles to Users 201

What Roles Do I Need? 202

Guard Access to Cluster-Admin 202

Applications and Deployment 203

RBAC Troubleshooting 204

Security Scanning 204

Clair 204

Aqua 205

xiv | Table of Contents

Anchore Engine 205

Backups 206

Do I Need to Back Up Kubernetes? 206

Backing Up etcd 206

Backing Up Resource State 207

Backing Up Cluster State 207

Large and Small Disasters 208

Velero 208

Monitoring Cluster Status 211

kubectl 211

CPU and Memory Utilization 213

Cloud Provider Console 213

Kubernetes Dashboard 214

Weave Scope 216

kube-ops-view 216

node-problem-detector 216

Further Reading 217

Summary 217

12. Deploying Kubernetes Applications. 219

Building Manifests with Helm 219

What’s Inside a Helm Chart? 220

Helm Templates 221

Interpolating Variables 222

Quoting Values in Templates 223

Specifying Dependencies 223

Deploying Helm Charts 223

Setting Variables 223

Specifying Values in a Helm Release 224

Updating an App with Helm 225

Rolling Back to Previous Versions 225

Creating a Helm Chart Repo 226

Managing Helm Chart Secrets with Sops 226

Managing Multiple Charts with Helmfile 228

What’s in a Helmfile? 228

Chart Metadata 229

Applying the Helmfile 230

Advanced Manifest Management Tools 231

ksonnet 231

Kapitan 232

kustomize 233

kompose 233

Table of Contents | xv

Ansible 234

kubeval 234

Summary 235

13. Development Workflow. 237

Development Tools 237

Skaffold 237

Draft 238

Telepresence 238

Knative 238

Deployment Strategies 239

Rolling Updates 239

Recreate 240

maxSurge and maxUnavailable 240

Blue/Green Deployments 241

Rainbow Deployments 242

Canary Deployments 242

Handling Migrations with Helm 243

Helm Hooks 243

Handling Failed Hooks 244

Other Hooks 244

Chaining Hooks 244

Summary 245

14. Continuous Deployment in Kubernetes. 247

What Is Continuous Deployment? 247

Which CD Tool Should I Use? 248

Jenkins 248

Drone 249

Google Cloud Build 249

Concourse 249

Spinnaker 249

GitLab CI 250

Codefresh 250

Azure Pipelines 250

CD Components 250

Docker Hub 250

Gitkube 250

Flux 251

Keel 251

A CD Pipeline with Cloud Build 251

Setting Up Google Cloud and GKE 251

xvi | Table of Contents

Forking the Demo Repository 252

Introducing Cloud Build 252

Building the Test Container 252

Running the Tests 253

Building the Application Container 253

Validating the Kubernetes Manifests 254

Publishing the Image 254

Git SHA Tags 254

Creating the First Build Trigger 255

Testing the Trigger 255

Deploying from a CD Pipeline 257

Creating a Deploy Trigger 259

Optimizing Your Build Pipeline 259

Adapting the Example Pipeline 260

Summary 260

15. Observability and Monitoring. 263

What Is Observability? 263

What Is Monitoring? 263

Black-Box Monitoring 263

What Does “Up” Mean? 265

Logging 266

Introducing Metrics 268

Tracing 269

Observability 270

The Observability Pipeline 271

Monitoring in Kubernetes 272

External Black-Box Checks 272

Internal Health Checks 274

Summary 276

16. Metrics in Kubernetes. 277

What Are Metrics, Really? 277

Time Series Data 278

Counters and Gauges 278

What Can Metrics Tell Us? 279

Choosing Good Metrics 279

Services: The RED Pattern 280

Resources: The USE Pattern 281

Business Metrics 282

Kubernetes Metrics 283

Analyzing Metrics 286

Table of Contents | xvii

What’s Wrong with a Simple Average? 287

Means, Medians, and Outliers 287

Discovering Percentiles 288

Applying Percentiles to Metrics Data 288

We Usually Want to Know the Worst 290

Beyond Percentiles 290

Graphing Metrics with Dashboards 291

Use a Standard Layout for All Services 291

Build an Information Radiator with Master Dashboards 292

Dashboard Things That Break 293

Alerting on Metrics 295

What’s Wrong with Alerts? 295

On-call Should Not Be Hell 296

Urgent, Important, and Actionable Alerts 296

Track Your Alerts, Out-of-Hours Pages, and Wake-ups 297

Metrics Tools and Services 298

Prometheus 298

Google Stackdriver 300

AWS Cloudwatch 301

Azure Monitor 301

Datadog 301

New Relic 302

Summary 303

Afterword. 305

Index. 307

xviii | Table of Contents

Foreword by NGINX

Digital transformation initiatives in enterprises today are driving innovation and agil‐

ity as well as delivering superior customer experiences for global consumers. Embrac‐

ing technologies and software development methodologies such as cloud computing,

containers, and DevOps have been pivotal to digital transformation.

Containers offer a host of advantages—they are portable and resource efficient, pro‐

vide effective isolation, and accelerate the development process. As you build new

cloud-native applications using microservices or migrate existing ones to this new

environment, building, deploying, and scaling these applications will present its own

set of challenges. Service discovery and load balancing, storage, failure recovery, roll‐

backs, and configuration management all have to be performed at scale for objects

that are usually ephemeral, sometimes across a multi-cloud environment. Creating a

robust continuous integration and continuous delivery (CI/CD) process in order to

realize agility and high feature velocity further adds to this complexity.

Kubernetes is the most pervasive container orchestration platform to address these

challenges. It lets you manage complex application deployments quickly in a predict‐

able and reliable manner.

This is a must-have book for both beginning and experienced users of Kubernetes.

Authors John Arundel and Justin Domingus provide in-depth guidance in an incre‐

mental and logical manner, covering the entire lifecycle of managing a Kubernetes

environment, including initial deployment, runtime operation, security, and ongoing

maintenance and monitoring. As you’ll see throughout this book, NGINX Open

Source and our commercial-grade application delivery platform, NGINX Plus, are

key components in successful production deployments with Kubernetes.

On the frontend, NGINX Open Source and NGINX Plus act as a stable entry point to

your Kubernetes services—a persistent and reliable connection for external clients.

NGINX Open Source provides foundational routing and load balancing capabilities

to manage traffic across your containers. NGINX Plus, built on top of NGINX Open

Source, provides advanced capabilities. It integrates well with service discovery plat‐

xix

forms, achieves session persistence for stateful applications, authenticates APIs using

JSON Web Token (JWT), and can be reconfigured dynamically when the set of ser‐

vice instances changes.

As you move to a Kubernetes infrastructure, NGINX Plus helps you achieve

enterprise-grade traffic management for your containerized applications. We sin‐

cerely hope you enjoy this book as it helps you to succeed with your production

deployments using Kubernetes.

 — Karthik Krishnaswamy

 Product Marketer, NGINX, Inc.

 December 2018

xx | Foreword by NGINX

Foreword by Ihor Dvoretskyi

Welcome to Cloud Native DevOps with Kubernetes.

Kubernetes is a real industry revolution. Just a brief look at the Cloud Native Com‐

puting Foundation’s Landscape, which contains data about more than 600 projects

that exist in the cloud native world today, highlights the importance of Kubernetes

these days. Not all these tools were developed for Kubernetes, not all of them can

even be used with Kubernetes, but all of them are part of the huge ecosystem where

Kubernetes is one of the flagship technologies.

Kubernetes changed the way applications are developed and operated. It’s a core com‐

ponent in the DevOps world today. Kubernetes brings flexibility to developers and

freedom to operations. Today you can use Kubernetes on any major cloud provider,

on bare-metal on-premises environments, as well as on a local developer’s machine.

Stability, flexibility, a powerful API, open code, and an open developer community

are a few reasons why Kubernetes became an industry standard, just as Linux is a

standard in the world of operating systems.

 Cloud Native DevOps with Kubernetes is a great handbook for people who are per‐

forming their day-to-day activities with Kubernetes or are just starting their Kuber‐

netes journey. John and Justin cover all the major aspects of deploying, configuring,

and operating Kubernetes and the best practices for developing and running applica‐

tions on it. They also give a great overview of the related technologies, including

Prometheus, Helm, and continuous deployment. This is a must-read book for every‐

one in the DevOps world.

xxi

Kubernetes is not just yet another exciting tool; it is an industry standard and the

foundation for next-generation technologies including serverless (OpenFaaS, Kna‐

tive) and machine learning (Kubeflow) tools. The entire IT industry is changing

because of the cloud native revolution, and it’s hugely exciting to be living through it.

 — Ihor Dvoretskyi

 Developer Advocate, Cloud Native

 Computing Foundation

 December 2018

xxii | Foreword by Ihor Dvoretskyi

Preface

In the world of IT operations, the key principles of DevOps have become well under‐

stood and widely adopted, but now the landscape is changing. A new application

platform called Kubernetes has become rapidly adopted by companies all over the

world and in all kinds of different industries. As more and more applications and

businesses move from traditional servers to the Kubernetes environment, people are

asking how to do DevOps in this new world.

This book explains what DevOps means in a cloud native world where Kubernetes is

the standard platform. It will help you select the best tools and frameworks from the

Kubernetes ecosystem. It will also present a coherent way to use those tools and

frameworks, offering battle-tested solutions that are running right now, in produc‐

tion, for real.

What Will I Learn?

You’ll learn what Kubernetes is, where it comes from, and what it means for the

future of software development and operations. You’ll learn how containers work,

how to build and manage them, and how to design cloud native services and infra‐

structure.

You’ll understand the trade-offs between building and hosting Kubernetes clusters

yourself, and using managed services. You’ll learn the capabilities, limitations, and

pros and cons of popular Kubernetes installation tools such as kops, kubeadm, and

Kubespray. You’ll get an informed overview of the major managed Kubernetes offer‐

ings from the likes of Amazon, Google, and Microsoft.

You’ll get hands-on practical experience of writing and deploying Kubernetes applica‐

tions, configuring and operating Kubernetes clusters, and automating cloud infra‐

structure and deployments with tools such as Helm. You’ll learn about Kubernetes

support for security, authentication, and permissions, including Role-Based Access

xxiii

Control (RBAC), and best practices for securing containers and Kubernetes in pro‐

duction.

You’ll learn how to set up continuous integration and deployment with Kubernetes,

how to back up and restore data, how to test your cluster for conformance and relia‐

bility, how to monitor, trace, log, and aggregate metrics, and how to make your

Kubernetes infrastructure scalable, resilient, and cost-effective.

To illustrate all the things we talk about, we apply them to a very simple demo appli‐

cation. You can follow along with all our examples using the code from our Git repo.

Who Is This Book For?

This book is most directly relevant to IT operations staff responsible for servers,

applications, and services, and developers responsible for either building new cloud

native services, or migrating existing applications to Kubernetes and cloud. We

assume no prior knowledge of Kubernetes or containers—don’t worry, we’ll walk you

through all that.

Experienced Kubernetes users should still find much valuable material in the book: it

covers advanced topics such as RBAC, continuous deployment, secrets management,

and observability. Whatever your level of expertise, we hope you’ll find something

useful in these pages.

What Questions Does This Book Answer?

In planning and writing this book, we spoke to hundreds of people about cloud

native and Kubernetes, ranging from industry leaders and experts to complete begin‐

ners. Here are some of the questions they said they wanted a book like this to answer:

• “I’d like to learn why I should invest my time in this technology. What problems

will it help to solve for me and my team?”

• “Kubernetes seems great, but it’s quite a steep learning curve. Setting up a quick

demo is easy, but operating and troubleshooting it seems daunting. We’d like

some solid guidance on how people are running Kubernetes clusters in the real

world, and what problems we’re likely to encounter.”

• “Opinionated advice would be useful. The Kubernetes ecosystem has too many

options for beginning teams to choose between. When there are multiple ways of

doing the same thing, which one is best? How do we choose?”

And perhaps the most important question of all:

• “How do I use Kubernetes without breaking my company?”

xxiv | Preface

We kept these questions, and many others, firmly in mind while writing this book,

and we’ve done our level best to answer them. How did we do? Turn the page to find

out.

Conventions Used in This Book

The following typographical conventions are used in this book:

 Italic Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐

ments such as variable or function names, databases, data types, environment

variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

 Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐

mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | xxv

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at

 https://github.com/cloudnativedevops/demo.

This book is here to help you get your job done. In general, if example code is offered

with this book, you may use it in your programs and documentation. You do not

need to contact us for permission unless you’re reproducing a significant portion of

the code. For example, writing a program that uses several chunks of code from this

book does not require permission. Selling or distributing a CD-ROM of examples

from O’Reilly books does require permission. Answering a question by citing this

book and quoting example code does not require permission. Incorporating a signifi‐

cant amount of example code from this book into your product’s documentation does

require permission.

We appreciate, but do not require, attribution. An attribution usually includes the

title, author, publisher, and ISBN. For example: “Cloud Native DevOps with Kuber‐

 netes by John Arundel and Justin Domingus (O’Reilly). Copyright 2019 John Arundel

and Justin Domingus, 978-1-492-04076-7.”

If you feel your use of code examples falls outside fair use or the permission given

above, feel free to contact us at permissions@oreil y.com.

O’Reilly Safari

 Safari (formerly Safari Books Online) is a membership-based

training and reference platform for enterprise, government,

educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐

tive tutorials, and curated playlists from over 250 publishers, including O’Reilly

Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐

sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,

John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe

Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and

Course Technology, among others.

For more information, please visit http://oreil y.com/safari.

xxvi | Preface

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at https://oreil.ly/2BaE1iq.

To comment or ask technical questions about this book, send email to bookques‐

 tions@oreil y.com.

For more information about our books, courses, conferences, and news, see our web‐

site at http://www.oreil y.com.

Find us on Facebook: http://facebook.com/oreil y

Follow us on Twitter: http://twitter.com/oreil ymedia

Watch us on YouTube: http://www.youtube.com/oreil ymedia

Acknowledgments

Our grateful thanks are due to the many people who read early drafts of this book

and gave us invaluable feedback and advice, or assisted us in other ways, including

(but not limited to) Abby Bangser, Adam J. McPartlan, Adrienne Domingus, Alexis

Richardson, Aron Trauring, Camilla Montonen, Gabriell Nascimento, Hannah

Klemme, Hans Findel, Ian Crosby, Ian Shaw, Ihor Dvoretskyi, Ike Devolder, Jeremy

Yates, Jérôme Petazzoni, Jessica Deen, John Harris, Jon Barber, Kitty Karate, Marco

Lancini, Mark Ellens, Matt North, Michel Blanc, Mitchell Kent, Nicolas Steinmetz,

Nigel Brown, Patrik Duditš, Paul van der Linden, Philippe Ensarguet, Pietro Mam‐

berti, Richard Harper, Rick Highness, Sathyajith Bhat, Suresh Vishnoi, Thomas Lia‐

kos, Tim McGinnis, Toby Sullivan, Tom Hall, Vincent De Smet, and Will Thames.

Preface | xxvii

CHAPTER 1

Revolution in the Cloud

There was never a time when the world began, because it goes round and round

like a circle, and there is no place on a circle where it begins.

—Alan Watts

There’s a revolution going on. Actually, three revolutions.

The first revolution is the creation of the cloud, and we’ll explain what that is and why

it’s important. The second is the dawn of DevOps, and you’ll find out what that

involves and how it’s changing operations. The third revolution is the coming of con‐

tainers. Together, these three waves of change are creating a new software world: the

 cloud native world. The operating system for this world is called Kubernetes.

In this chapter, we’ll briefly recount the history and significance of these revolutions,

and explore how the changes are affecting the way we all deploy and operate software.

We’ll outline what cloud native means, and what changes you can expect to see in this

new world if you work in software development, operations, deployment, engineer‐

ing, networking, or security.

Thanks to the effects of these interlinked revolutions, we think the future of comput‐

ing lies in cloud-based, containerized, distributed systems, dynamically managed by

automation, on the Kubernetes platform (or something very like it). The art of devel‐

oping and running these applications— cloud native DevOps—is what we’ll explore in

the rest of this book.

If you’re already familiar with all of this background material, and you just want to

start having fun with Kubernetes, feel free to skip ahead to Chapter 2. If not, settle

down comfortably, with a cup of your favorite beverage, and we’ll begin.

1

The Creation of the Cloud

In the beginning (well, the 1960s, anyway), computers filled rack after rack in vast,

remote, air-conditioned data centers, and users would never see them or interact with

them directly. Instead, developers submitted their jobs to the machine remotely and

waited for the results. Many hundreds or thousands of users would all share the same

computing infrastructure, and each would simply receive a bill for the amount of pro‐

cessor time or resources she used.

It wasn’t cost-effective for each company or organization to buy and maintain its own

computing hardware, so a business model emerged where users would share the

computing power of remote machines, owned and run by a third party.

If that sounds like right now, instead of last century, that’s no coincidence. The word

 revolution means “circular movement,” and computing has, in a way, come back to

where it began. While computers have gotten a lot more powerful over the years—

today’s Apple Watch is the equivalent of about three of the mainframe computers

shown in Figure 1-1—shared, pay-per-use access to computing resources is a very old

idea. Now we call it the cloud, and the revolution that began with timesharing main‐

frames has come full circle.

 Figure 1-1. Early cloud computer: the IBM System/360 Model 91, at NASA’s Goddard

 Space Flight Center

2 | Chapter 1: Revolution in the Cloud

Buying Time

The central idea of the cloud is this: instead of buying a computer, you buy compute.

That is, instead of sinking large amounts of capital into physical machinery, which is

hard to scale, breaks down mechanically, and rapidly becomes obsolete, you simply

buy time on someone else’s computer, and let them take care of the scaling, mainte‐

nance, and upgrading. In the days of bare-metal machines—the “Iron Age”, if you like

—computing power was a capital expense. Now it’s an operating expense, and that

has made all the difference.

The cloud is not just about remote, rented computing power. It is also about dis‐

tributed systems. You may buy raw compute resource (such as a Google Compute

instance, or an AWS Lambda function) and use it to run your own software, but

increasingly you also rent cloud services: essentially, the use of someone else’s soft‐

ware. For example, if you use PagerDuty to monitor your systems and alert you when

something is down, you’re using a cloud service (sometimes called software as a ser‐

 vice, or SaaS).

Infrastructure as a Service

When you use cloud infrastructure to run your own services, what you’re buying is

 infrastructure as a service (IaaS). You don’t have to expend capital to purchase it, you

don’t have to build it, and you don’t have to upgrade it. It’s just a commodity, like elec‐

tricity or water. Cloud computing is a revolution in the relationship between busi‐

nesses and their IT infrastructure.

Outsourcing the hardware is only part of the story; the cloud also allows you to out‐

source the software that you don’t write: operating systems, databases, clustering, rep‐

lication, networking, monitoring, high availability, queue and stream processing, and

all the myriad layers of software and configuration that span the gap between your

code and the CPU. Managed services can take care of almost all of this undifferenti‐

 ated heavy lifting for you (you’ll find out more about the benefits of managed services

in Chapter 3).

The revolution in the cloud has also triggered another revolution in the people who

use it: the DevOps movement.

The Dawn of DevOps

Before DevOps, developing and operating software were essentially two separate jobs,

performed by two different groups of people. Developers wrote software, and they

passed it on to operations staff, who ran and maintained the software in production

(that is to say, serving real users, instead of merely running under test conditions).

Like computers that need their own floor of the building, this separation has its roots

The Dawn of DevOps | 3

in the middle of the last century. Software development was a very specialist job, and

so was computer operation, and there was very little overlap between the two.

Indeed, the two departments had quite different goals and incentives, which often

conflicted with each other (Figure 1-2). Developers tend to be focused on shipping

new features quickly, while operations teams care about making services stable and

reliable over the long term.

 Figure 1-2. Separate teams can lead to conflicting incentives (photo by Dave Roth)

When the cloud came on the horizon, things changed. Distributed systems are com‐

plex, and the internet is very big. The technicalities of operating the system—recover‐

ing from failures, handling timeouts, smoothly upgrading versions—are not so easy

to separate from the design, architecture, and implementation of the system.

Further, “the system” is no longer just your software: it comprises in-house software,

cloud services, network resources, load balancers, monitoring, content distribution

networks, firewalls, DNS, and so on. All these things are intimately interconnected

and interdependent. The people who write the software have to understand how it

relates to the rest of the system, and the people who operate the system have to

understand how the software works—or fails.

The origins of the DevOps movement lie in attempts to bring these two groups

together: to collaborate, to share understanding, to share responsibility for systems

reliability and software correctness, and to improve the scalability of both the soft‐

ware systems and the teams of people who build them.

4 | Chapter 1: Revolution in the Cloud

Nobody Understands DevOps

DevOps has occasionally been a controversial idea, both with people who insist it’s

nothing more than a modern label for existing good practice in software develop‐

ment, and with those who reject the need for greater collaboration between develop‐

ment and operations.

There is also widespread misunderstanding about what DevOps actually is: A job

title? A team? A methodology? A skill set? The influential DevOps writer John Willis

has identified four key pillars of DevOps, which he calls culture, automation, meas‐

urement, and sharing (CAMS). Another way to break it down is what Brian Dawson

has called the DevOps trinity: people and culture, process and practice, and tools and

technology.

Some people think that cloud and containers mean that we no longer need DevOps—

a point of view sometimes called NoOps. The idea is that since all IT operations are

outsourced to a cloud provider or another third-party service, businesses don’t need

full-time operations staff.

The NoOps fallacy is based on a misapprehension of what DevOps work actually

involves:

With DevOps, much of the traditional IT operations work happens before code rea‐

ches production. Every release includes monitoring, logging, and A/B testing. CI/CD

pipelines automatically run unit tests, security scanners, and policy checks on every

commit. Deployments are automatic. Controls, tasks, and non-functional require‐

ments are now implemented before release instead of during the frenzy and aftermath

of a critical outage.

—Jordan Bach (AppDynamics)

The most important thing to understand about DevOps is that it is primarily an

organizational, human issue, not a technical one. This accords with Jerry Weinberg’s

 Second Law of Consulting:

No matter how it looks at first, it’s always a people problem.

—Gerald M. Weinberg, Secrets of Consulting

The Business Advantage

From a business point of view, DevOps has been described as “improving the quality

of your software by speeding up release cycles with cloud automation and practices,

with the added benefit of software that actually stays up in production” (The Regis‐

ter).

Adopting DevOps requires a profound cultural transformation for businesses, which

needs to start at the executive, strategic level, and propagate gradually to every part of

The Dawn of DevOps | 5

the organization. Speed, agility, collaboration, automation, and software quality are

key goals of DevOps, and for many companies that means a major shift in mindset.

But DevOps works, and studies regularly suggest that companies that adopt DevOps

principles release better software faster, react better and faster to failures and prob‐

lems, are more agile in the marketplace, and dramatically improve the quality of their

products:

DevOps is not a fad; rather it is the way successful organizations are industrializing the

delivery of quality software today and will be the new baseline tomorrow and for years

to come.

—Brian Dawson (Cloudbees), Computer Business Review

Infrastructure as Code

Once upon a time, developers dealt with software, while operations teams dealt with

hardware and the operating systems that run on that hardware.

Now that hardware is in the cloud, everything, in a sense, is software. The DevOps

movement brings software development skills to operations: tools and workflows for

rapid, agile, collaborative building of complex systems. Inextricably entwined with

DevOps is the notion of infrastructure as code.

Instead of physically racking and cabling computers and switches, cloud infrastruc‐

ture can be automatically provisioned by software. Instead of manually deploying and

upgrading hardware, operations engineers have become the people who write the

software that automates the cloud.

The traffic isn’t just one-way. Developers are learning from operations teams how to

anticipate the failures and problems inherent in distributed, cloud-based systems,

how to mitigate their consequences, and how to design software that degrades grace‐

fully and fails safe.

Learning Together

Both development teams and operations teams are also learning how to work

together. They’re learning how to design and build systems, how to monitor and get

feedback on systems in production, and how to use that information to improve the

systems. Even more importantly, they’re learning to improve the experience for their

users, and to deliver better value for the business that funds them.

The massive scale of the cloud and the collaborative, code-centric nature of the

DevOps movement have turned operations into a software problem. At the same

time, they have also turned software into an operations problem, all of which raises

these questions:

6 | Chapter 1: Revolution in the Cloud

• How do you deploy and upgrade software across large, diverse networks of dif‐

ferent server architectures and operating systems?

• How do you deploy to distributed environments, in a reliable and reproducible

way, using largely standardized components?

Enter the third revolution: the container.

The Coming of Containers

To deploy a piece of software, you need not only the software itself, but its dependen‐

 cies. That means libraries, interpreters, subpackages, compilers, extensions, and so on.

You also need its configuration. Settings, site-specific details, license keys, database

passwords: everything that turns raw software into a usable service.

The State of the Art

Earlier attempts to solve this problem include using configuration management sys‐

tems, such as Puppet or Ansible, which consist of code to install, run, configure, and

update the shipping software.

Alternatively, some languages provide their own packaging mechanism, like Java’s

JAR files, or Python’s eggs, or Ruby’s gems. However, these are language-specific, and

don’t entirely solve the dependency problem: you still need a Java runtime installed

before you can run a JAR file, for example.

Another solution is the omnibus package, which, as the name suggests, attempts to

cram everything the application needs inside a single file. An omnibus package con‐

tains the software, its configuration, its dependent software components, their config‐

uration, their dependencies, and so on. (For example, a Java omnibus package would

contain the Java runtime as well as all the JAR files for the application.)

Some vendors have even gone a step further and included the entire computer system

required to run it, as a virtual machine image, but these are large and unwieldy, time-

consuming to build and maintain, fragile to operate, slow to download and deploy,

and vastly inefficient in performance and resource footprint.

From an operations point of view, not only do you need to manage these various

kinds of packages, but you also need to manage a fleet of servers to run them on.

Servers need to be provisioned, networked, deployed, configured, kept up to date

with security patches, monitored, managed, and so on.

This all takes a significant amount of time, skill, and effort, just to provide a platform

to run software on. Isn’t there a better way?

The Coming of Containers | 7

Thinking Inside the Box

To solve these problems, the tech industry borrowed an idea from the shipping

industry: the container. In the 1950s, a truck driver named Malcolm McLean pro‐

posed that, instead of laboriously unloading goods individually from the truck trailers

that brought them to the ports and loading them onto ships, trucks themselves simply

be loaded onto the ship—or rather, the truck bodies.

A truck trailer is essentially a big metal box on wheels. If you can separate the box—

the container—from the wheels and chassis used to transport it, you have something

that is very easy to lift, load, stack, and unload, and can go right onto a ship or

another truck at the other end of the voyage (Figure 1-3).

McLean’s container shipping firm, Sea-Land, became very successful by using this

system to ship goods far more cheaply, and containers quickly caught on. Today, hundreds of millions of containers are shipped every year, carrying trillions of dollars

worth of goods.

 Figure 1-3. Standardized containers dramatical y cut the cost of shipping bulk goods

 (photo by Pixabay , licensed under Creative Commons 2.0)

Putting Software in Containers

The software container is exactly the same idea: a standard packaging and distribu‐

tion format that is generic and widespread, enabling greatly increased carrying

8 | Chapter 1: Revolution in the Cloud

capacity, lower costs, economies of scale, and ease of handling. The container format

contains everything the application needs to run, baked into an image file that can be

executed by a container runtime.

How is this different from a virtual machine image? That, too, contains everything

the application needs to run—but a lot more besides. A typical virtual machine image

is around 1 GiB. 1 A well-designed container image, on the other hand, might be a

hundred times smaller.

Because the virtual machine contains lots of unrelated programs, libraries, and things

that the application will never use, most of its space is wasted. Transferring VM

images across the network is far slower than optimized containers.

Even worse, virtual machines are virtual: the underlying physical CPU effectively

implements an emulated CPU, which the virtual machine runs on. The virtualization

layer has a dramatic, negative effect on performance: in tests, virtualized workloads

run about 30% slower than the equivalent containers.

In comparison, containers run directly on the real CPU, with no virtualization over‐

head, just as ordinary binary executables do.

And because containers only hold the files they need, they’re much smaller than VM

images. They also use a clever technique of addressable filesystem layers, which can

be shared and reused between containers.

For example, if you have two containers, each derived from the same Debian Linux

base image, the base image only needs to be downloaded once, and each container

can simply reference it.

The container runtime will assemble all the necessary layers and only download a

layer if it’s not already cached locally. This makes very efficient use of disk space and

network bandwidth.

Plug and Play Applications

Not only is the container the unit of deployment and the unit of packaging; it is also

the unit of reuse (the same container image can be used as a component of many

different services), the unit of scaling, and the unit of resource al ocation (a container

can run anywhere sufficient resources are available for its own specific needs).

Developers no longer have to worry about maintaining different versions of the soft‐

ware to run on different Linux distributions, against different library and language

1 The gibibyte (GiB) is the International Electrotechnical Commission (IEC) unit of data, defined as 1,024 mebi‐

 bytes (MiB). We’ll use IEC units (GiB, MiB, KiB) throughout this book to avoid any ambiguity.

The Coming of Containers | 9

versions, and so on. The only thing the container depends on is the operating system

kernel (Linux, for example).

Simply supply your application in a container image, and it will run on any platform

that supports the standard container format and has a compatible kernel.

Kubernetes developers Brendan Burns and David Oppenheimer put it this way in

their paper “Design Patterns for Container-based Distributed Systems” :

By being hermetically sealed, carrying their dependencies with them, and providing an

atomic deployment signal (“succeeded”/“failed”), [containers] dramatically improve on

the previous state of the art in deploying software in the datacenter or cloud. But con‐

tainers have the potential to be much more than just a better deployment vehicle—we

believe they are destined to become analogous to objects in object-oriented software

systems, and as such will enable the development of distributed system design patterns.

Conducting the Container Orchestra

Operations teams, too, find their workload greatly simplified by containers. Instead of

having to maintain a sprawling estate of machines of various kinds, architectures, and

operating systems, all they have to do is run a container orchestrator: a piece of soft‐

ware designed to join together many different machines into a cluster: a kind of uni‐

fied compute substrate, which appears to the user as a single very powerful computer

on which containers can run.

The terms orchestration and scheduling are often used loosely as synonyms. Strictly

speaking, though, orchestration in this context means coordinating and sequencing

different activities in service of a common goal (like the musicians in an orchestra).

 Scheduling means managing the resources available and assigning workloads where

they can most efficiently be run. (Not to be confused with scheduling in the sense of

 scheduled jobs, which execute at preset times.)

A third important activity is cluster management: joining multiple physical or virtual

servers into a unified, reliable, fault-tolerant, apparently seamless group.

The term container orchestrator usually refers to a single service that takes care of

scheduling, orchestration, and cluster management.

 Containerization (using containers as your standard method of deploying and run‐

ning software) offered obvious advantages, and a de facto standard container format

has made possible all kinds of economies of scale. But one problem still stood in the

way of the widespread adoption of containers: the lack of a standard container

orchestration system.

As long as several different tools for scheduling and orchestrating containers compe‐

ted in the marketplace, businesses were reluctant to place expensive bets on which

technology to use. But all that was about to change.

10 | Chapter 1: Revolution in the Cloud

Kubernetes

Google was running containers at scale for production workloads long before anyone

else. Nearly all of Google’s services run in containers: Gmail, Google Search, Google

Maps, Google App Engine, and so on. Because no suitable container orchestration

system existed at the time, Google was compelled to invent one.

From Borg to Kubernetes

To solve the problem of running a large number of services at global scale on millions

of servers, Google developed a private, internal container orchestration system it

called Borg.

Borg is essentially a centralized management system that allocates and schedules con‐

tainers to run on a pool of servers. While very powerful, Borg is tightly coupled to

Google’s own internal and proprietary technologies, difficult to extend, and impossi‐

ble to release to the public.

In 2014, Google founded an open source project named Kubernetes (from the Greek

word κυβερνήτης, meaning “helmsman, pilot”) that would develop a container

orchestrator that everyone could use, based on the lessons learned from Borg and its

successor, Omega.

Kubernetes’s rise was meteoric. While other container orchestration systems existed

before Kubernetes, they were commercial products tied to a vendor, and that was

always a barrier to their widespread adoption. With the advent of a truly free and

open source container orchestrator, adoption of both containers and Kubernetes grew

at a phenomenal rate.

By late 2017, the orchestration wars were over, and Kubernetes had won. While other

systems are still in use, from now on companies looking to move their infrastructure

to containers only need to target one platform: Kubernetes.

What Makes Kubernetes So Valuable?

Kelsey Hightower, a staff developer advocate at Google, coauthor of Kubernetes Up &

 Running (O’Reilly), and all-around legend in the Kubernetes community, puts it this

way:

Kubernetes does the things that the very best system administrator would do:

automation, failover, centralized logging, monitoring. It takes what we’ve learned

in the DevOps community and makes it the default, out of the box.

—Kelsey Hightower

Many of the traditional sysadmin tasks like upgrading servers, installing security

patches, configuring networks, and running backups are less of a concern in the

Kubernetes | 11

cloud native world. Kubernetes can automate these things for you so that your team

can concentrate on doing its core work.

Some of these features, like load balancing and autoscaling, are built into the Kuber‐

netes core; others are provided by add-ons, extensions, and third-party tools that use

the Kubernetes API. The Kubernetes ecosystem is large, and growing all the time.

Kubernetes makes deployment easy

Ops staff love Kubernetes for these reasons, but there are also some significant advan‐

tages for developers. Kubernetes greatly reduces the time and effort it takes to deploy.

Zero-downtime deployments are common, because Kubernetes does rolling updates

by default (starting containers with the new version, waiting until they become

healthy, and then shutting down the old ones).

Kubernetes also provides facilities to help you implement continuous deployment

practices such as canary deployments: gradually rolling out updates one server at a

time to catch problems early (see “Canary Deployments” on page 242). Another com‐

mon practice is blue-green deployments: spinning up a new version of the system in

parallel, and switching traffic over to it once it’s fully up and running (see “Blue/

Green Deployments” on page 241).

Demand spikes will no longer take down your service, because Kubernetes supports

autoscaling. For example, if CPU utilization by a container reaches a certain level,

Kubernetes can keep adding new replicas of the container until the utilization falls

below the threshold. When demand falls, Kubernetes will scale down the replicas

again, freeing up cluster capacity to run other workloads.

Because Kubernetes has redundancy and failover built in, your application will be

more reliable and resilient. Some managed services can even scale the Kubernetes

cluster itself up and down in response to demand, so that you’re never paying for a

larger cluster than you need at any given moment (see “Autoscaling” on page 102).

The business will love Kubernetes too, because it cuts infrastructure costs and makes

much better use of a given set of resources. Traditional servers, even cloud servers,

are mostly idle most of the time. The excess capacity that you need to handle demand

spikes is essentially wasted under normal conditions.

Kubernetes takes that wasted capacity and uses it to run workloads, so you can ach‐

ieve much higher utilization of your machines—and you get scaling, load balancing,

and failover for free too.

While some of these features, such as autoscaling, were available before Kubernetes,

they were always tied to a particular cloud provider or service. Kubernetes is provider-

 agnostic: once you’ve defined the resources you use, you can run them on any Kuber‐

netes cluster, regardless of the underlying cloud provider.

12 | Chapter 1: Revolution in the Cloud

That doesn’t mean that Kubernetes limits you to the lowest common denominator.

Kubernetes maps your resources to the appropriate vendor-specific features: for

example, a load-balanced Kubernetes service on Google Cloud will create a Google

Cloud load balancer, on Amazon it will create an AWS load balancer. Kubernetes

abstracts away the cloud-specific details, letting you focus on defining the behavior of

your application.

Just as containers are a portable way of defining software, Kubernetes resources pro‐

vide a portable definition of how that software should run.

Will Kubernetes Disappear?

Oddly enough, despite the current excitement around Kubernetes, we may not be

talking much about it in years to come. Many things that once were new and revolu‐

tionary are now so much part of the fabric of computing that we don’t really think

about them: microprocessors, the mouse, the internet.

Kubernetes, too, is likely to disappear and become part of the plumbing. It’s boring, in

a good way: once you learn what you need to know to deploy your application to

Kubernetes, you’re more or less done.

The future of Kubernetes is likely to lie largely in the realm of managed services. Vir‐

tualization, which was once an exciting new technology, has now simply become a

utility. Most people rent virtual machines from a cloud provider rather than run their

own virtualization platform, such as vSphere or Hyper-V.

In the same way, we think Kubernetes will become so much a standard part of the

plumbing that you just won’t know it’s there anymore.

Kubernetes Doesn’t Do It All

Will the infrastructure of the future be entirely Kubernetes-based? Probably not.

Firstly, some things just aren’t a good fit for Kubernetes (databases, for example):

Orchestrating software in containers involves spinning up new interchangeable instan‐

ces without requiring coordination between them. But database replicas are not inter‐

changeable; they each have a unique state, and deploying a database replica requires

coordination with other nodes to ensure things like schema changes happen every‐

where at the same time:

—Sean Loiselle (Cockroach Labs)

While it’s perfectly possible to run stateful workloads like databases in Kubernetes

with enterprise-grade reliability, it requires a large investment of time and engineer‐

ing that it may not make sense for your company to make (see “Run Less Software”

on page 47). It’s usually more cost-effective to use managed services instead.

Kubernetes | 13

Secondly, some things don’t actually need Kubernetes, and can run on what are some‐

times called serverless platforms, better named functions as a service, or FaaS plat‐

forms.

Cloud functions and funtainers

AWS Lambda, for example, is a FaaS platform that allows you to run code written in

Go, Python, Java, Node.js, C#, and other languages, without you having to compile or

deploy your application at all. Amazon does all that for you.

Because you’re billed for the execution time in increments of 100 milliseconds, the

FaaS model is perfect for computations that only run when you need them to, instead

of paying for a cloud server, which runs all the time whether you’re using it or not.

These cloud functions are more convenient than containers in some ways (though

some FaaS platforms can run containers as well). But they are best suited to short,

standalone jobs (AWS Lambda limits functions to fifteen minutes of run time, for

example, and around 50 MiB of deployed files), especially those that integrate with

existing cloud computation services, such as Microsoft Cognitive Services or the

Google Cloud Vision API.

Why don’t we like to refer to this model as serverless? Well, it isn’t: it’s just somebody

else’s server. The point is that you don’t have to provision and maintain that server;

the cloud provider takes care of it for you.

Not every workload is suitable for running on FaaS platforms, by any means, but it is

still likely to be a key technology for cloud native applications in the future.

Nor are cloud functions restricted to public FaaS platforms such as Lambda or Azure

Functions: if you already have a Kubernetes cluster and want to run FaaS applications

on it, OpenFaaS and other open source projects make this possible. This hybrid of

functions and containers is sometimes called funtainers, a name we find appealing.

A more sophisticated software delivery platform for Kubernetes that encompasses

both containers and cloud functions, called Knative, is currently under active devel‐

opment (see “Knative” on page 238). This is a very promising project, which may

mean that in the future the distinction between containers and functions may blur or

disappear altogether.

Cloud Native

The term cloud native has become an increasingly popular shorthand way of talking

about modern applications and services that take advantage of the cloud, containers,

and orchestration, often based on open source software.

14 | Chapter 1: Revolution in the Cloud

Indeed, the Cloud Native Computing Foundation (CNCF) was founded in 2015 to, in

their words, “foster a community around a constellation of high-quality projects that

orchestrate containers as part of a microservices architecture.”

Part of the Linux Foundation, the CNCF exists to bring together developers, end-

users, and vendors, including the major public cloud providers. The best-known

project under the CNCF umbrella is Kubernetes itself, but the foundation also incu‐

bates and promotes other key components of the cloud native ecosystem: Prome‐

theus, Envoy, Helm, Fluentd, gRPC, and many more.

So what exactly do we mean by cloud native? Like most such things, it means different

things to different people, but perhaps there is some common ground.

Cloud native applications run in the cloud; that’s not controversial. But just taking an

existing application and running it on a cloud compute instance doesn’t make it cloud

native. Neither is it just about running in a container, or using cloud services such as

Azure’s Cosmos DB or Google’s Pub/Sub, although those may well be important

aspects of a cloud native application.

So let’s look at a few of the characteristics of cloud native systems that most people

can agree on:

 Automatable

If applications are to be deployed and managed by machines, instead of humans,

they need to abide by common standards, formats, and interfaces. Kubernetes

provides these standard interfaces in a way that means application developers

don’t even need to worry about them.

 Ubiquitous and flexible

Because they are decoupled from physical resources such as disks, or any specific

knowledge about the compute node they happen to be running on, containerized

microservices can easily be moved from one node to another, or even one cluster

to another.

 Resilient and scalable

Traditional applications tend to have single points of failure: the application stops

working if its main process crashes, or if the underlying machine has a hardware

failure, or if a network resource becomes congested. Cloud native applications,

because they are inherently distributed, can be made highly available through

redundancy and graceful degradation.

 Dynamic

A container orchestrator such as Kubernetes can schedule containers to take

maximum advantage of available resources. It can run many copies of them to

achieve high availability, and perform rolling updates to smoothly upgrade serv‐

ices without ever dropping traffic.

Cloud Native | 15

 Observable

Cloud native apps, by their nature, are harder to inspect and debug. So a key

requirement of distributed systems is observability: monitoring, logging, tracing,

and metrics all help engineers understand what their systems are doing (and

what they’re doing wrong).

 Distributed

Cloud native is an approach to building and running applications that takes

advantage of the distributed and decentralized nature of the cloud. It’s about how

your application works, not where it runs. Instead of deploying your code as a

single entity (known as a monolith), cloud native applications tend to be com‐

posed of multiple, cooperating, distributed microservices. A microservice is sim‐

ply a self-contained service that does one thing. If you put enough microservices

together, you get an application.

It’s not just about microservices

However, microservices are not a panacea. Monoliths are easier to understand,

because everything is in one place, and you can trace the interactions of different

parts. But it’s hard to scale monoliths, both in terms of the code itself, and the teams

of developers who maintain it. As the code grows, the interactions between its various

parts grow exponentially, and the system as a whole grows beyond the capacity of a

single brain to understand it all.

A well-designed cloud native application is composed of microservices, but deciding

what those microservices should be, where the boundaries are, and how the different

services should interact is no easy problem. Good cloud native service design consists

of making wise choices about how to separate the different parts of your architecture.

However, even a well-designed cloud native application is still a distributed system,

which makes it inherently complex, difficult to observe and reason about, and prone

to failure in surprising ways.

While cloud native systems tend to be distributed, it’s still possible to run monolithic

applications in the cloud, using containers, and gain considerable business value from

doing so. This may be a step on the road to gradually migrating parts of the monolith

outward to modern microservices, or a stopgap measure pending the redesign of the

system to be fully cloud native.

The Future of Operations

Operations, infrastructure engineering, and system administration are highly skilled

jobs. Are they at risk in a cloud native future? We think not.

Instead, these skills will only become more important. Designing and reasoning

about distributed systems is hard. Networks and container orchestrators are compli‐

16 | Chapter 1: Revolution in the Cloud

cated. Every team developing cloud native applications will need operations skills and

knowledge. Automation frees up staff from boring, repetitive manual work to deal

with more complex, interesting, and fun problems that computers can’t yet solve for

themselves.

That doesn’t mean all current operations jobs are guaranteed. Sysadmins used to be

able to get by without coding skills, except maybe cooking up the odd simple shell

script. In the cloud, that won’t fly.

In a software-defined world, the ability to write, understand, and maintain software

becomes critical. If you can’t or won’t learn new skills, the world will leave you behind

—and it’s always been that way.

Distributed DevOps

Rather than being concentrated in a single operations team that services other teams,

ops expertise will become distributed among many teams.

Each development team will need at least one ops specialist, responsible for the health

of the systems or services the team provides. She will be a developer, too, but she will

also be the domain expert on networking, Kubernetes, performance, resilience, and

the tools and systems that enable the other developers to deliver their code to the

cloud.

Thanks to the DevOps revolution, there will no longer be room in most organizations

for devs who can’t ops, or ops who don’t dev. The distinction between those two disci‐

plines is obsolete, and is rapidly being erased altogether. Developing and operating

software are merely two aspects of the same thing.

Some Things Will Remain Centralized

Are there limits to DevOps? Or will the traditional central IT and operations team

disappear altogether, dissolving into a group of roving internal consultants, coaching,

teaching, and troubleshooting ops issues?

We think not, or at least not entirely. Some things still benefit from being centralized.

It doesn’t make sense for each application or service team to have its own way of

detecting and communicating about production incidents, for example, or its own

ticketing system, or deployment tools. There’s no point in everybody reinventing

their own wheel.

Developer Productivity Engineering

The point is that self-service has its limits, and the aim of DevOps is to speed up

development teams, not slow them down with unnecessary and redundant work.

The Future of Operations | 17

Yes, a large part of traditional operations can and should be devolved to other teams,

primarily those that involve code deployment and responding to code-related inci‐

dents. But to enable that to happen, there needs to be a strong central team building

and supporting the DevOps ecosystem in which all the other teams operate.

Instead of calling this team operations, we like the name developer productivity engi‐

 neering (DPE). DPE teams do whatever’s necessary to help developers do their work

better and faster: operating infrastructure, building tools, busting problems.

And while developer productivity engineering remains a specialist skill set, the engi‐

neers themselves may move outward into the organization to bring that expertise

where it’s needed.

Lyft engineer Matt Klein has suggested that, while a pure DevOps model makes sense

for startups and small firms, as an organization grows, there is a natural tendency for

infrastructure and reliability experts to gravitate toward a central team. But he says

that team can’t be scaled indefinitely:

By the time an engineering organization reaches ~75 people, there is almost certainly a

central infrastructure team in place starting to build common substrate features

required by product teams building microservices. But there comes a point at which

the central infrastructure team can no longer both continue to build and operate the

infrastructure critical to business success, while also maintaining the support burden

of helping product teams with operational tasks.

—Matt Klein

At this point, not every developer can be an infrastructure expert, just as a single

team of infrastructure experts can’t service an ever-growing number of developers.

For larger organizations, while a central infrastructure team is still needed, there’s also

a case for embedding site reliability engineers (SREs) into each development or prod‐

uct team. They bring their expertise to each team as consultants, and also form a

bridge between product development and infrastructure operations.

You Are the Future

If you’re reading this book, it means you’re going to be part of this new cloud native

future. In the remaining chapters, we’ll cover all the knowledge and skills you’ll need

as a developer or operations engineer working with cloud infrastructure, containers,

and Kubernetes.

Some of these things will be familiar, and some will be new, but we hope that when

you’ve finished the book you’ll feel more confident in your own ability to acquire and

master cloud native skills. Yes, there’s a lot to learn, but it’s nothing you can’t handle.

You’ve got this!

Now read on.

18 | Chapter 1: Revolution in the Cloud

Summary

We’ve necessarily given you a rather quick tour of the cloud native DevOps landscape,

but we hope it’s enough to bring you up to speed with some of the problems that

cloud, containers, and Kubernetes solve, and how they’re likely to change the IT busi‐

ness. If you’re already familiar with this, then we appreciate your patience.

A quick recap of the main points before we move on to meet Kubernetes in person in

the next chapter:

• Cloud computing frees you from the expense and overhead of managing your

own hardware, making it possible for you to build resilient, flexible, scalable dis‐

tributed systems.

• DevOps is a recognition that modern software development doesn’t stop at ship‐

ping code: it’s about closing the feedback loop between those who write the code

and those who use it.

• DevOps also brings a code-centric approach and good software engineering

practices to the world of infrastructure and operations.

• Containers allow you to deploy and run software in small, standardized, self-

contained units. This makes it easier and cheaper to build large, diverse, dis‐

tributed systems, by connecting together containerized microservices.

• Orchestration systems take care of deploying your containers, scheduling, scal‐

ing, networking, and all the things that a good system administrator would do,

but in an automated, programmable way.

• Kubernetes is the de facto standard container orchestration system, and it’s ready

for you to use in production right now, today.

• Cloud native is a useful shorthand for talking about cloud-based, containerized,

distributed systems, made up of cooperating microservices, dynamically man‐

aged by automated infrastructure as code.

• Operations and infrastructure skills, far from being made obsolete by the cloud

native revolution, are and will become more important than ever.

• It still makes sense for a central team to build and maintain the platforms and

tools that make DevOps possible for all the other teams.

• What will go away is the sharp distinction between software engineers and opera‐

tions engineers. It’s all just software now, and we’re all engineers.

Summary | 19

CHAPTER 2

First Steps with Kubernetes

To do anything truly worth doing, I must not stand back shivering and thinking

of the cold and danger, but jump in with gusto and scramble through as well as I

can.

—Og Mandino

Enough with the theory; let’s start working with Kubernetes and containers. In this

chapter, you’ll build a simple containerized application and deploy it to a local Kuber‐

netes cluster running on your machine. In the process, you’ll meet some very impor‐

tant cloud native technologies and concepts: Docker, Git, Go, container registries,

and the kubectl tool.

This chapter is interactive! Often, throughout this book, we’ll ask

you to follow along with the examples by installing things on your

own computer, typing commands, and running containers. We

find that’s a much more effective way to learn than just having

things explained in words.

Running Your First Container

As we saw in Chapter 1, the container is one of the key concepts in cloud native

development. The fundamental tool for building and running containers is Docker.

In this section, we’ll use the Docker Desktop tool to build a simple demo application,

run it locally, and push the image to a container registry.

If you’re already very familiar with containers, skip straight to “Hello, Kubernetes” on

page 29, where the real fun starts. If you’re curious to know what containers are and

how they work, and to get a little practical experience with them before you start

learning about Kubernetes, read on.

21

Installing Docker Desktop

Docker Desktop is a complete Kubernetes development environment for Mac or

Windows that runs on your laptop (or desktop). It includes a single-node Kubernetes

cluster that you can use to test your applications.

Let’s install Docker Desktop now and use it to run a simple containerized application.

If you already have Docker installed, skip this section and go straight on to “Running

a Container Image” on page 22.

Download a version of the Docker Desktop Community Edition suitable for your

computer, then follow the instructions for your platform to install Docker and start it

up.

Docker Desktop isn’t currently available for Linux, so Linux users

will need to install Docker Engine instead, and then Minikube (see

“Minikube” on page 31).

Once you’ve done that, you should be able to open a terminal and run the following

command:

docker version

Client:

Version: 18.03.1-ce

...

The exact output will be different depending on your platform, but if Docker is cor‐

rectly installed and running, you’ll see something like the example output shown. On

Linux systems, you may need to run sudo docker version instead.

What Is Docker?

Docker is actually several different, but related things: a container image format, a

 container runtime library, which manages the life cycle of containers, a command-line

tool for packaging and running containers, and an API for container management.

The details needn’t concern us here, since Kubernetes uses Docker as one of many

components, though an important one.

Running a Container Image

What exactly is a container image? The technical details don’t really matter for our

purposes, but you can think of an image as being like a ZIP file. It’s a single binary file

that has a unique ID and holds everything needed to run the container.

22 | Chapter 2: First Steps with Kubernetes

Whether you’re running the container directly with Docker, or on a Kubernetes clus‐

ter, all you need to specify is a container image ID or URL, and the system will take

care of finding, downloading, unpacking, and starting the container for you.

We’ve written a little demo application that we’ll use throughout the book to illustrate

what we’re talking about. You can download and run the application using a con‐

tainer image we prepared earlier. Run the following command to try it out:

docker container run -p 9999:8888 --name hello cloudnatived/demo:hello

Leave this command running, and point your browser to http://localhost:9999/.

You should see a friendly message:

Hello, 世界

Any time you make a request to this URL, our demo application will be ready and

waiting to greet you.

Once you’ve had as much fun as you can stand, stop the container by pressing Ctrl-C

in your terminal.

The Demo Application

So how does it work? Let’s download the source code for the demo application that

runs in this container and have a look.

You’ll need Git installed for this part. 1 If you’re not sure whether you already have Git,

try the following command:

git version

git version 2.17.0

If you don’t already have Git, follow the installation instructions for your platform.

Once you’ve installed Git, run this command:

git clone https://github.com/cloudnativedevops/demo.git

Cloning into demo...

...

Looking at the Source Code

This Git repository contains the demo application we’ll be using throughout this

book. To make it easier to see what’s going on at each stage, the repo contains each

successive version of the app in a different subdirectory. The first one is named sim‐

ply hel o. To look at the source code, run this command:

1 If you’re not familiar with Git, read Scott Chacon and Ben Straub’s excellent book Pro Git (Apress).

The Demo Application | 23

cd demo/hello

ls

Dockerfile README.md

go.mod main.go

Open the file main.go in your favorite editor (we recommend Visual Studio Code

which has excellent support for Go, Docker, and Kubernetes development). You’ll see

this source code:

package main

import (

"fmt"

"log"

"net/http"

)

func handler(w http.ResponseWriter, r *http.Request) {

fmt.Fprintln(w, "Hello, 世界")

}

func main() {

http.HandleFunc("/", handler)

log.Fatal(http.ListenAndServe(":8888", nil))

}

Introducing Go

Our demo application is written in the Go programming language.

Go is a modern programming language (developed at Google since 2009) that priori‐

tizes simplicity, safety, and readability, and is designed for building large-scale con‐

current applications, especially network services. It’s also a lot of fun to program in. 2

Kubernetes itself is written in Go, as are Docker, Terraform, and many other popular

open source projects. This makes Go a good choice for developing cloud native appli‐

cations.

How the Demo App Works

As you can see, the demo app is pretty simple, even though it implements an HTTP

server (Go comes with a powerful standard library). The core of it is this function,

called handler:

2 If you’re a fairly experienced programmer, but new to Go, Alan Donovan and Brian Kernighan’s The Go Pro‐

 gramming Language (Addison-Wesley) is an invaluable guide.

24 | Chapter 2: First Steps with Kubernetes

func handler(w http.ResponseWriter, r *http.Request) {

fmt.Fprintln(w, "Hello, 世界")

}

As the name suggests, it handles HTTP requests. The request is passed in as an argu‐

ment to the function (though the function doesn’t do anything with it, yet).

An HTTP server also needs a way to send something back to the client. The

http.ResponseWriter object enables our function to send a message back to the user

to display in her browser: in this case, just the string Hello, 世界.

The first example program in any language traditionally prints Hello, world. But

because Go natively supports Unicode (the international standard for text representa‐

tion), example Go programs often print Hello, 世界 instead, just to show off. If you

don’t happen to speak Chinese, that’s okay: Go does!

The rest of the program takes care of registering the handler function as the handler

for HTTP requests, and actually starting the HTTP server to listen and serve on port

8888.

That’s the whole app! It doesn’t do much yet, but we will add capabilities to it as we go

on.

Building a Container

You know that a container image is a single file that contains everything the container

needs to run, but how do you build an image in the first place? Well, to do that, you

use the docker image build command, which takes as input a special text file called

a Dockerfile. The Dockerfile specifies exactly what needs to go into the container

image.

One of the key benefits of containers is the ability to build on existing images to cre‐

ate new images. For example, you could take a container image containing the com‐

plete Ubuntu operating system, add a single file to it, and the result will be a new

image.

In general, a Dockerfile has instructions for taking a starting image (a so-called base

 image), transforming it in some way, and saving the result as a new image.

Understanding Dockerfiles

Let’s see the Dockerfile for our demo application (it’s in the hel o subdirectory of the

app repo):

FROM golang:1.11-alpine AS build

WORKDIR /src/

COPY main.go go.* /src/

Building a Container | 25

RUN CGO_ENABLED=0 go build -o /bin/demo

FROM scratch

COPY --from=build /bin/demo /bin/demo

ENTRYPOINT ["/bin/demo"]

The exact details of how this works don’t matter for now, but it uses a fairly standard

build process for Go containers called multi-stage builds. The first stage starts from an

official golang container image, which is just an operating system (in this case Alpine

Linux) with the Go language environment installed. It runs the go build command

to compile the main.go file we saw earlier.

The result of this is an executable binary file named demo. The second stage takes a

completely empty container image (called a scratch image, as in from scratch) and

copies the demo binary into it.

Minimal Container Images

Why the second build stage? Well, the Go language environment, and the rest of

Alpine Linux, is really only needed in order to build the program. To run the pro‐

gram, all it takes is the demo binary, so the Dockerfile creates a new scratch container

to put it in. The resulting image is very small (about 6 MiB)—and that’s the image

that can be deployed in production.

Without the second stage, you would have ended up with a container image about

350 MiB in size, 98% of which is unnecessary and will never be executed. The smaller

the container image, the faster it can be uploaded and downloaded, and the faster it

will be to start up.

Minimal containers also have a reduced attack surface for security issues. The fewer

programs there are in your container, the fewer potential vulnerabilities.

Because Go is a compiled language that can produce self-contained executables, it’s

ideal for writing minimal (scratch) containers. By comparison, the official Ruby con‐

tainer image is 1.5 GiB; about 250 times bigger than our Go image, and that’s before

you’ve added your Ruby program!

Running docker image build

We’ve seen that the Dockerfile contains instructions for the docker image build tool

to turn our Go source code into an executable container. Let’s go ahead and try it. In

the hel o directory, run the following command:

docker image build -t myhello .

Sending build context to Docker daemon 4.096kB

Step 1/7 : FROM golang:1.11-alpine AS build

...

26 | Chapter 2: First Steps with Kubernetes

Successfully built eeb7d1c2e2b7

Successfully tagged myhello:latest

Congratulations, you just built your first container! You can see from the output that

Docker performs each of the actions in the Dockerfile in sequence on the newly

formed container, resulting in an image that’s ready to use.

Naming Your Images

When you build an image, by default it just gets a hexadecimal ID, which you can use

to refer to it later (for example, to run it). These IDs aren’t particularly memorable or

easy to type, so Docker allows you to give the image a human-readable name, using

the -t switch to docker image build. In the previous example you named the image

myhello, so you should be able to use that name to run the image now.

Let’s see if it works:

docker container run -p 9999:8888 myhello

You’re now running your own copy of the demo application, and you can check it by

browsing to the same URL as before (http://localhost:9999/).

You should see Hello, 世界. When you’re done running this image, press Ctrl-C to

stop the docker container run command.

Exercise

If you’re feeling adventurous, modify the main.go file in the demo application and

change the greeting so that it says “Hello, world” in your favorite language (or change

it to say whatever you like). Rebuild the container and run it to check that it works.

Congratulations, you’re now a Go programmer! But don’t stop there: take the interac‐

tive Tour of Go to learn more.

Port Forwarding

Programs running in a container are isolated from other programs running on the

same machine, which means they can’t have direct access to resources like network

ports.

The demo application listens for connections on port 8888, but this is the container’s

own private port 8888, not a port on your computer. In order to connect to the con‐

tainer’s port 8888, you need to forward a port on your local machine to that port on

the container. It could be any port, including 8888, but we’ll use 9999 instead, to make

it clear which is your port, and which is the container’s.

Building a Container | 27

To tell Docker to forward a port, you can use the -p switch, just as you did earlier in

“Running a Container Image” on page 22:

docker container run -p HOST_PORT:CONTAINER_PORT ...

Once the container is running, any requests to HOST_PORT on the local computer will

be forwarded automatically to CONTAINER_PORT on the container, which is how you’re

able to connect to the app with your browser.

Container Registries

In “Running a Container Image” on page 22, you were able to run an image just by

giving its name, and Docker downloaded it for you automatically.

You might reasonably wonder where it’s downloaded from. While you can use

Docker perfectly well by just building and running local images, it’s much more use‐

ful if you can push and pull images from a container registry. The registry allows you

to store images and retrieve them using a unique name (like cloudnatived/

demo:hello).

The default registry for the docker container run command is Docker Hub, but

you can specify a different one, or set up your own.

For now, let’s stick with Docker Hub. While you can download and use any public

container image from Docker Hub, to push your own images you’ll need an account

(called a Docker ID). Follow the instructions at https://hub.docker.com/ to create your

Docker ID.

Authenticating to the Registry

Once you’ve got your Docker ID, the next step is to connect your local Docker dae‐

mon with Docker Hub, using your ID and password:

docker login

Login with your Docker ID to push and pull images from Docker Hub. If you don't

have a Docker ID, head over to https://hub.docker.com to create one.

Username: YOUR_DOCKER_ID

Password: YOUR_DOCKER_PASSWORD

Login Succeeded

Naming and Pushing Your Image

In order to be able to push a local image to the registry, you need to name it using this

format: YOUR_DOCKER_ID/myhello.

To create this name, you don’t need to rebuild the image; instead, run this command:

docker image tag myhello YOUR_DOCKER_ID/myhello

28 | Chapter 2: First Steps with Kubernetes

This is so that when you push the image to the registry, Docker knows which account

to store it in.

Go ahead and push the image to Docker Hub, using this command:

docker image push YOUR_DOCKER_ID/myhello

The push refers to repository [docker.io/YOUR_DOCKER_ID/myhello]

b2c591f16c33: Pushed

latest: digest:

sha256:7ac57776e2df70d62d7285124fbff039c9152d1bdfb36c75b5933057cefe4fc7

size: 528

Running Your Image

Congratulations! Your container image is now available to run anywhere (at least,

anywhere with access to the internet), using the command:

docker container run -p 9999:8888 YOUR_DOCKER_ID/myhello

Hello, Kubernetes

Now that you’ve built and pushed your first container image, you can run it using the

docker container run command, but that’s not very exciting. Let’s do something a

little more adventurous and run it in Kubernetes.

There are lots of ways to get a Kubernetes cluster, and we’ll explore some of them in

more detail in Chapter 3. If you already have access to a Kubernetes cluster, that’s

great, and if you like you can use it for the rest of the examples in this chapter.

If not, don’t worry. Docker Desktop includes Kubernetes support (Linux users, see

“Minikube” on page 31 instead). To enable it, open the Docker Desktop Preferences,

select the Kubernetes tab, and check Enable (see Figure 2-1).

 Figure 2-1. Enabling Kubernetes support in Docker Desktop

Hello, Kubernetes | 29

It will take a few minutes to install and start Kubernetes. Once that’s done, you’re

ready to run the demo app!

Running the Demo App

Let’s start by running the demo image you built earlier. Open a terminal and run the

kubectl command with the following arguments:

kubectl run demo --image= YOUR_DOCKER_ID/myhello --port=9999 --labels app=demo

deployment.apps "demo" created

Don’t worry about the details of this command for now: it’s basically the Kubernetes

equivalent of the docker container run command you used earlier in this chapter

to run the demo image. If you haven’t built your own image yet, you can use ours:

--image=cloudnatived/demo:hello.

Recall that you needed to forward port 9999 on your local machine to the container’s

port 8888 in order to connect to it with your web browser. You’ll need to do the same

thing here, using kubectl port-forward:

kubectl port-forward deploy/demo 9999:8888

Forwarding from 127.0.0.1:9999 -> 8888

Forwarding from [::1]:9999 -> 8888

Leave this command running and open a new terminal to carry on.

Connect to http://localhost:9999/ with your browser to see the Hello, 世界 message.

It may take a few seconds for the container to start and for the app to be available. If it

isn’t ready after half a minute or so, try this command:

kubectl get pods --selector app=demo

NAME READY STATUS RESTARTS AGE

demo-54df94b7b7-qgtc6 1/1 Running 0 9m

When the container is running and you connect to it with your browser, you’ll see

this message in the terminal:

Handling connection for 9999

If the Container Doesn’t Start

If the STATUS is not shown as Running, there may be a problem. For example, if the

status is ErrImagePull or ImagePullBackoff, it means Kubernetes wasn’t able to find

and download the image you specified. You may have made a typo in the image

name; check your kubectl run command.

If the status is ContainerCreating, then all is well; Kubernetes is still downloading

and starting the image. Just wait a few seconds and check again.

30 | Chapter 2: First Steps with Kubernetes

Minikube

If you don’t want to use, or can’t use, the Kubernetes support in Docker Desktop,

there is an alternative: the well-loved Minikube. Like Docker Desktop, Minikube pro‐

vides a single-node Kubernetes cluster that runs on your own machine (in fact, in a

virtual machine, but that doesn’t matter).

To install Minikube, follow these Minikube installation instructions.

Summary

If, like us, you quickly grow impatient with wordy essays about why Kubernetes is so

great, we hope you enjoyed getting to grips with some practical tasks in this chapter.

If you’re an experienced Docker or Kubernetes user already, perhaps you’ll forgive the

refresher course. We want to make sure that everybody feels quite comfortable with

building and running containers in a basic way, and that you have a Kubernetes envi‐

ronment you can play and experiment with, before getting on to more advanced

things.

Here’s what you should take away from this chapter:

• All the source code examples (and many more) are available in the demo reposi‐

tory that accompanies this book.

• The Docker tool lets you build containers locally, push them to or pull them from

a container registry such as Docker Hub, and run container images locally on

your machine.

• A container image is completely specified by a Dockerfile: a text file that contains

instructions about how to build the container.

• Docker Desktop lets you run a small (single-node) Kubernetes cluster on your

machine, which is nonetheless capable of running any containerized application.

Minikube is another option.

• The kubectl tool is the primary way of interacting with a Kubernetes cluster, and

can be used either imperatively (to run a public container image, for example, and

implicitly creating the necessary Kubernetes resources), or declaratively, to apply

Kubernetes configuration in the form of YAML manifests.

Minikube | 31

CHAPTER 3

Getting Kubernetes

Perplexity is the beginning of knowledge.

—Kahlil Gibran

Kubernetes is the operating system of the cloud native world, providing a reliable and

scalable platform for running containerized workloads. But how should you run

Kubernetes? Should you host it yourself? On cloud instances? On bare-metal servers?

Or should you use a managed Kubernetes service? Or a managed platform that’s

based on Kubernetes, but extends it with workflow tools, dashboards, and web inter‐

faces?

That’s a lot of questions for one chapter to answer, but we’ll try.

It’s worth noting that we won’t be particularly concerned here with the technical

details of operating Kubernetes itself, such as building, tuning, and troubleshooting

clusters. There are many excellent resources to help you with that, of which we partic‐

ularly recommend Kubernetes cofounder Brendan Burns’s book Managing Kuber‐

 netes: Operating Kubernetes Clusters in the Real World (O’Reilly).

Instead, we’ll focus on helping you understand the basic architecture of a cluster, and

give you the information you need to decide how to run Kubernetes. We’ll outline the

pros and cons of managed services, and look at some of the popular vendors.

If you want to run your own Kubernetes cluster, we list some of the best installation

tools available to help you set up and manage clusters.

Cluster Architecture

You know that Kubernetes connects multiple servers into a cluster, but what is a clus‐

ter, and how does it work? The technical details don’t matter for the purposes of this

book, but you should understand the basic components of Kubernetes and how they

33

fit together, in order to understand what your options are when it comes to building

or buying Kubernetes clusters.

The Control Plane

The cluster’s brain is called the control plane, and it runs all the tasks required for

Kubernetes to do its job: scheduling containers, managing Services, serving API

requests, and so on (see Figure 3-1).

 Figure 3-1. How a Kubernetes cluster works

The control plane is actually made up of several components:

kube-apiserver

This is the frontend server for the control plane, handling API requests.

etcd

This is the database where Kubernetes stores all its information: what nodes exist,

what resources exist on the cluster, and so on.

kube-scheduler

This decides where to run newly created Pods.

kube-controller-manager

This is responsible for running resource controllers, such as Deployments.

cloud-controller-manager

This interacts with the cloud provider (in cloud-based clusters), managing

resources such as load balancers and disk volumes.

The members of the cluster which run the control plane components are called mas‐

 ter nodes.

34 | Chapter 3: Getting Kubernetes

Node Components

Cluster members that run user workloads are called worker nodes (Figure 3-2).

Each worker node in a Kubernetes cluster runs these components:

kubelet

This is responsible for driving the container runtime to start workloads that are

scheduled on the node, and monitoring their status.

kube-proxy

This does the networking magic that routes requests between Pods on different

nodes, and between Pods and the internet.

 Container runtime

This actually starts and stops containers and handles their communications. Usu‐

ally Docker, but Kubernetes supports other container runtimes, such as rkt and

CRI-O.

Other than running different software components, there’s no intrinsic difference

between master nodes and worker nodes. Master nodes don’t usually run user work‐

loads, though, except in very small clusters (like Docker Desktop or Minikube).

 Figure 3-2. How the Kubernetes components fit together

High Availability

A correctly configured Kubernetes control plane has multiple master nodes, making

it highly available; that is, if any individual master node fails or is shut down, or one of

the control plane components on it stops running, the cluster will still work properly.

A highly available control plane will also handle the situation where the master nodes

Cluster Architecture | 35

are working properly, but some of them cannot communicate with the others, due to

a network failure (known as a network partition).

The etcd database is replicated across multiple nodes, and can survive the failure of

individual nodes, so long as a quorum of over half the original number of etcd repli‐

cas is still available.

If all of this is configured correctly, the control plane can survive a reboot or tempo‐

rary failure of individual master nodes.

Control plane failure

A damaged control plane doesn’t necessarily mean that your applications will go

down, although it might well cause strange and errant behavior.

For example, if you were to stop all the master nodes in your cluster, the Pods on the

worker nodes would keep on running—at least for a while. But you would be unable

to deploy any new containers or change any Kubernetes resources, and controllers

such as Deployments would stop working.

Therefore, high availability of the control plane is critical to a properly functioning

cluster. You need to have enough master nodes available that the cluster can maintain

a quorum even if one fails; for production clusters, the workable minimum is three

(see “The smallest cluster” on page 96).

Worker node failure

By contrast, the failure of any worker node doesn’t really matter. Kubernetes will

detect the failure and reschedule the node’s Pods somewhere else, so long as the con‐

trol plane is still working.

If a large number of nodes fail at once, this might mean that the cluster no longer has

enough resources to run all the workloads you need. Fortunately, this doesn’t happen

often, and even if it does, Kubernetes will keep as many of your Pods running as it

can while you replace the missing nodes.

It’s worth bearing in mind, though, that the fewer worker nodes you have, the greater

the proportion of the cluster’s capacity each one represents. You should assume that a

single node failure will happen at any time, especially in the cloud, and two simulta‐

neous failures are not unheard of.

A rare, but entirely possible, kind of failure is losing a whole cloud availability zone.

Cloud vendors like AWS and Google Cloud provide multiple availability zones in

each region, each corresponding roughly to a single data center. For this reason,

rather than having all your worker nodes in the same zone, it’s a good idea to distrib‐

ute them across two or even three zones.

36 | Chapter 3: Getting Kubernetes

Trust, but verify

Although high availability should enable your cluster to survive losing one master, or

a few worker nodes, it’s always wise to actual y test this. During a scheduled mainte‐

nance window, or outside of peak hours, try rebooting a worker and see what hap‐

pens. (Hopefully, nothing, or nothing that’s visible to users of your applications.)

For a more demanding test, reboot one of the master nodes. (Managed services such

as Google Kubernetes Engine, which we’ll discuss later in the chapter, don’t allow you

to do this, for obvious reasons.) Still, a production-grade cluster should survive this

with no problems whatsoever.

The Costs of Self-Hosting Kubernetes

The most important decision facing anyone who’s considering running production

workloads in Kubernetes is buy or build? Should you run your own clusters, or pay

someone else to run them? Let’s look at some of the options.

The most basic choice of all is self-hosted Kubernetes. By self-hosted we mean that

you, personally, or a team in your organization, install and configure Kubernetes, on

machines that you own or control, just as you might do with any other software that

you use, such as Redis, PostgreSQL, or Nginx.

This is the option that gives you the maximum flexibility and control. You can decide

what versions of Kubernetes to run, what options and features are enabled, when and

whether to upgrade clusters, and so on. But there are some significant downsides, as

we’ll see in the next section.

It’s More Work Than You Think

The self-hosted option also requires the maximum resources, in terms of people,

skills, engineering time, maintenance, and troubleshooting. Just setting up a working

Kubernetes cluster is pretty simple, but that’s a long way from a cluster that’s ready for

production. You need to consider at least the following questions:

• Is the control plane highly available? That is, if a master node goes down or

becomes unresponsive, does your cluster still work? Can you still deploy or

update apps? Will your running applications still be fault-tolerant without the

control plane? (See “High Availability” on page 35.)

• Is your pool of worker nodes highly available? That is, if an outage should take

down several worker nodes, or even a whole cloud availability zone, will your

workloads stop running? Will your cluster keep working? Will it be able to auto‐

matically provision new nodes to heal itself, or will it require manual interven‐

tion?

The Costs of Self-Hosting Kubernetes | 37

• Is your cluster set up securely? Do its internal components communicate using

TLS encryption and trusted certificates? Do users and applications have minimal

rights and permissions for cluster operations? Are container security defaults set

properly? Do nodes have unnecessary access to control plane components? Is

access to the underlying etcd database properly controlled and authenticated?

• Are all services in your cluster secure? If they’re accessible from the internet, are

they properly authenticated and authorized? Is access to the cluster API strictly

limited?

• Is your cluster conformant? Does it meet the standards for Kubernetes clusters

defined by the Cloud Native Computing Foundation? (See “Conformance Check‐

ing” on page 102 for details.)

• Are your cluster nodes fully config-managed, rather than being set up by impera‐

tive shell scripts and then left alone? The operating system and kernel on each

node needs to be updated, have security patches applied, and so on.

• Is the data in your cluster properly backed up, including any persistent storage?

What is your restore process? How often do you test restores?

• Once you have a working cluster, how do you maintain it over time? How do you

provision new nodes? Roll out config changes to existing nodes? Roll out Kuber‐

netes updates? Scale in response to demand? Enforce policies?

Distributed systems engineer and writer Cindy Sridharan has estimated that it takes around a million dollars in engineer salary to get Kubernetes up and running in a

production configuration from scratch (“And you still might not get there”). That fig‐

ure should give any technical leader food for thought when considering self-hosted

Kubernetes.

It’s Not Just About the Initial Setup

Now bear in mind that you need to pay attention to these factors not just when set‐

ting up the first cluster for the first time, but for all your clusters for all time. When

you make changes or upgrades to your Kubernetes infrastructure, you need to con‐

sider the impact on high availability, security, and so on.

You’ll need to have monitoring in place to make sure the cluster nodes and all the

Kubernetes components are working properly, and an alerting system so that staff can

be paged to deal with any problems, day or night.

Kubernetes is still in rapid development, and new features and updates are being

released all the time. You’ll need to keep your cluster up to date with those, and

understand how the changes affect your existing setup. You may need to reprovision

your cluster to get the full benefit of the latest Kubernetes functionality.

38 | Chapter 3: Getting Kubernetes

It’s also not enough to read a few books or articles, configure the cluster the right way,

and leave it at that. You need to test and verify the configuration on a regular basis—

by killing a master node and making sure everything still works, for example.

Automated resilience testing tools such as Netflix’s Chaos Monkey can help with this,

by randomly killing nodes, Pods, or network connections every so often. Depending

on the reliability of your cloud provider, you may find that Chaos Monkey is unnec‐

essary, as regular real-world failures will also test the resilience of your cluster and the

services running on it (see “Chaos Testing” on page 107).

Tools Don’t Do All the Work for You

There are tools—lots and lots of tools—to help you set up and configure Kubernetes

clusters, and many of them advertise themselves as being more or less point-and-

click, zero-effort, instant solutions. The sad fact is that in our opinion, the large

majority of these tools solve only the easy problems, and ignore the hard ones.

On the other hand, powerful, flexible, enterprise-grade commercial tools tend to be

very expensive, or not even available to the public, since there’s more money to be

made selling a managed service than there is selling a general-purpose cluster man‐

agement tool.

Kubernetes Is Hard

Despite the widespread notion that it’s simple to set up and manage, the truth is that

 Kubernetes is hard. Considering what it does, it’s remarkably simple and well-

designed, but it has to deal with very complex situations, and that leads to complex

software.

Make no mistake, there is a significant investment of time and energy involved in

both learning how to manage your own clusters properly, and actually doing it from

day to day, month to month. We don’t want to discourage you from using Kubernetes,

but we want you to have a clear understanding of what’s involved in running Kuber‐

netes yourself. This will help you to make an informed decision about the costs and

benefits of self-hosting, as opposed to using managed services.

Administration Overhead

If your organization is large, with resources to spare for a dedicated Kubernetes clus‐

ter operations team, this may not be such a big problem. But for small to medium

enterprises, or even startups with a handful of engineers, the administration overhead

of running your own Kubernetes clusters may be prohibitive.

The Costs of Self-Hosting Kubernetes | 39

Given a limited budget and number of staff available for IT opera‐

tions, what proportion of your resources do you want to spend on

administering Kubernetes itself? Would those resources be better

used to support your business’s workloads instead? Can you oper‐

ate Kubernetes more cost-effectively with your own staff, or by

using a managed service?

Start with Managed Services

You might be a little surprised that, in a Kubernetes book, we recommend that you

don’t run Kubernetes! At least, don’t run it yourself. For the reasons we’ve outlined in

the previous sections, we think that using managed services is likely to be far more

cost-effective than self-hosting Kubernetes clusters. Unless you want to do something

strange and experimental with Kubernetes that isn’t supported by any managed pro‐

vider, there are basically no good reasons to go the self-hosted route.

In our experience, and that of many of the people we interviewed

for this book, a managed service is the best way to run Kubernetes,

period.

If you’re considering whether Kubernetes is even an option for you, using a managed

service is a great way to try it out. You can get a fully working, secure, highly avail‐

able, production-grade cluster in a few minutes, for a few dollars a day. (Most cloud

providers even offer a free tier that lets you run a Kubernetes cluster for weeks or

months without incurring any charges.) Even if you decide, after a trial period, that

you’d prefer to run your own Kubernetes cluster, the managed services will show you

how it should be done.

On the other hand, if you’ve already experimented with setting up Kubernetes your‐

self, you’ll be delighted with how much easier managed services make the process.

You probably didn’t build your own house; why build your own cluster, when it’s

cheaper and quicker to have someone else do it, and the results are better?

In the next section, we’ll outline some of the most popular managed Kubernetes serv‐

ices, tell you what we think of them, and recommend our favorite. If you’re still not

convinced, the second half of the chapter will explore Kubernetes installers you can

use to build your own clusters (see “Kubernetes Installers” on page 44).

We should say at this point that neither of the authors is affiliated with any cloud pro‐

vider or commercial Kubernetes vendor. Nobody’s paying us to recommend their

product or service. The opinions here are our own, based on personal experience,

and the views of hundreds of Kubernetes users we spoke to while writing this book.

40 | Chapter 3: Getting Kubernetes

Naturally, things move quickly in the Kubernetes world, and the managed services

marketplace is especially competitive. Expect the features and services described here

to change rapidly. The list presented here is not complete, but we’ve tried to include

the services we feel are the best, the most widely used, or otherwise important.

Managed Kubernetes Services

Managed Kubernetes services relieve you of almost all the administration overhead of

setting up and running Kubernetes clusters, particularly the control plane. Effectively,

a managed service means you pay for someone else (such as Google) to run the clus‐

ter for you.

Google Kubernetes Engine (GKE)

As you’d expect from the originators of Kubernetes, Google offers a fully managed

Kubernetes service that is completely integrated with the Google Cloud Platform. Just

choose the number of worker nodes, and click a button in the GCP web console to

create a cluster, or use the Deployment Manager tool to provision one. Within a few

minutes, your cluster will be ready to use.

Google takes care of monitoring and replacing failed nodes, auto-applying security

patches, and high availability for the control plane and etcd. You can set your nodes

to auto-upgrade to the latest version of Kubernetes, during a maintenance window of

your choice.

High availability

GKE gives you a production-grade, highly available Kubernetes cluster with none of

the setup and maintenance overhead associated with self-hosted infrastructure.

Everything is controllable via the Google Cloud API, using Deployment Manager, 1

Terraform, or other tools, or you can use the GCP web console. Naturally, GKE is

fully integrated with all the other services in Google Cloud.

For extended high availability, you can create multizone clusters, which spread worker

nodes across multiple failure zones (roughly equivalent to individual data centers).

Your workloads will keep on running, even if a whole failure zone is affected by an

outage.

 Regional clusters take this idea even further, by distributing multiple master nodes

across failure zones, as well as workers.

1 Deployment Manager is Google’s command-line tool for managing cloud resources; not to be confused with

Kubernetes Deployments.

Managed Kubernetes Services | 41

Cluster Autoscaling

GKE also offers an attractive cluster autoscaling option (see “Autoscaling” on page

102). With autoscaling enabled, if there are pending workloads that are waiting for a

node to become available, the system will add new nodes automatically to accommo‐

date the demand.

Conversely, if there is spare capacity, the autoscaler will consolidate Pods onto a

smaller number of nodes and remove the unused nodes. Since billing for GKE is

based on the number of worker nodes, this helps you control costs.

GKE is best-of-breed

Google has been in the Kubernetes business longer than anybody else, and it shows.

GKE is, in our opinion, the best managed Kubernetes service available. If you already

have infrastructure in Google Cloud, it makes sense to use GKE to run Kubernetes. If

you’re already established on another cloud, it needn’t stop you using GKE if you

want to, but you should look first at managed options within your existing cloud pro‐

vider.

If you haven’t made a cloud provider decision yet, GKE is a persuasive argument in

favor of choosing Google Cloud.

Amazon Elastic Container Service for Kubernetes (EKS)

Amazon has also been providing managed container cluster services for a long time,

but until very recently the only option was Elastic Container Service (ECS), Amazon’s

proprietary technology.

While perfectly usable, ECS is not as powerful or flexible as Kubernetes, and evidently

even Amazon has decided that the future is Kubernetes, with the launch of Elastic

Container Service for Kubernetes (EKS). (Yes, EKS ought to stand for Elastic Kuber‐

 netes Service, but it doesn’t.)

It’s not quite as seamless an experience as Google Kubernetes Engine, so be prepared

to do more of the setup work yourself. Also, unlike some competitors, EKS charges

you for the master nodes as well as the other cluster infrastructure. This makes it

more expensive, for a given cluster size, than either Google or Microsoft’s managed

Kubernetes service.

If you already have infrastructure in AWS, or run containerized workloads in the

older ECS service that you want to move to Kubernetes, then EKS is a sensible choice.

As the newest entry into the managed Kubernetes marketplace, though, it has some

distance to go to catch up to the Google and Microsoft offerings.

42 | Chapter 3: Getting Kubernetes

Azure Kubernetes Service (AKS)

Although Microsoft came a little later to the cloud business than Amazon or Google,

they’re catching up fast. Azure Kubernetes Service (AKS) offers most of the features of its competitors, such as Google’s GKE. You can create clusters from the web interface or using the Azure az command-line tool.

As with GKE and EKS, you have no access to the master nodes, which are managed

internally, and your billing is based on the number of worker nodes in your cluster.

OpenShift

OpenShift is more than just a managed Kubernetes service: it’s a full Platform-as-a-

Service (PaaS) product, which aims to manage the whole software development life

cycle, including continuous integration and build tools, test runner, application

deployment, monitoring, and orchestration.

OpenShift can be deployed to bare-metal servers, virtual machines, private clouds,

and public clouds, so you can create a single Kubernetes cluster that spans all these

environments. This makes it a good choice for very large organizations, or those with

very heterogeneous infrastructure.

IBM Cloud Kubernetes Service

Naturally, the venerable IBM is not to be left out in the field of managed Kubernetes

services. IBM Cloud Kubernetes Service is pretty simple and straightforward, allow‐

ing you to set up a vanilla Kubernetes cluster in IBM Cloud.

You can access and manage your IBM Cloud cluster through the default Kubernetes

CLI and the provided command-line tool, or a basic GUI. There are no real killer fea‐

tures that differentiate IBM’s offering from the other major cloud providers, but it’s a

logical option if you’re already using IBM Cloud.

Heptio Kubernetes Subscription (HKS)

For large enterprises that want the security and flexibility of running clusters across

multiple public clouds, Heptio Kubernetes Subscription (HKS) aims to provide just

that.

Heptio has a solid brand in the Kubernetes world: it’s run by two of the cofounders of

the Kubernetes project, Craig McLuckie and Joe Beda, and has produced many

important open source tools, such as Velero (see “Velero” on page 208), and Sono‐

buoy (see “Conformance Testing with Sonobuoy” on page 104).

Managed Kubernetes Services | 43

Turnkey Kubernetes Solutions

While managed Kubernetes services are a good fit for most business requirements,

there may be some circumstances in which using managed services isn’t an option.

There is a growing class of turnkey offerings, which aim to give you a ready-to-use,

production-grade Kubernetes cluster by just clicking a button in a web browser.

Turnkey Kubernetes solutions are attractive both to large enterprises (because they

can have a commercial relationship with the vendor) and small companies with

scarce engineering and operations resources. Here are a few of the options in the

turnkey space.

Stackpoint

Stackpoint is advertised as “The simplest way to deploy a Kubernetes cluster to the

public cloud,” in as few as three clicks. There are various price points available, start‐

ing from $50 a month, and Stackpoint offers unlimited-node clusters, high availabil‐

ity for master nodes and for etcd, and support for federated clusters, which can span

multiple clouds (see “Federated clusters” on page 97).

As a compromise between self-hosted Kubernetes and fully managed services, Stack‐

point is an attractive option for companies that want to be able to provision and man‐

age Kubernetes from a web portal, but still run worker nodes on their own public

cloud infrastructure.

Containership Kubernetes Engine (CKE)

CKE is another web-based interface for provisioning Kubernetes in the public cloud.

It lets you get a cluster up and running with sensible defaults, or customize almost

every aspect of the cluster for more demanding requirements.

Kubernetes Installers

If managed or turnkey clusters won’t work for you, then you’ll need to consider some

level of Kubernetes self-hosting: that is, setting up and running Kubernetes yourself

on your own machines.

It’s very unlikely that you’ll deploy and run Kubernetes completely from scratch,

except for learning and demo purposes. The vast majority of people use one or more

of the available Kubernetes installer tools or services to set up and manage their

clusters.

44 | Chapter 3: Getting Kubernetes

kops

kops is a command-line tool for automated provisioning of Kubernetes clusters. It’s

part of the Kubernetes project, and has been around a long time as an AWS-specific

tool, but is now adding beta support for Google Cloud, and support for other provid‐

ers is planned.

kops supports building high-availability clusters, which makes it suitable for produc‐

tion Kubernetes deployments. It uses declarative configuration, just like Kubernetes

resources themselves, and it can not only provision the necessary cloud resources and

set up a cluster, but also scale it up and down, resize nodes, perform upgrades, and do

other useful admin tasks.

Like everything in the Kubernetes world, kops is under rapid development, but it’s a

relatively mature and sophisticated tool that is widely used. If you’re planning to run

self-hosted Kubernetes in AWS, kops is a good choice.

Kubespray

Kubespray (formerly known as Kargo), a project under the Kubernetes umbrella, is a

tool for easily deploying production-ready clusters. It offers lots of options, including

high availability, and support for multiple platforms.

Kubespray is focused on installing Kubernetes on existing machines, especially on-

premise and bare-metal servers. However, it’s also suitable for any cloud environ‐

ment, including private cloud (virtual machines that run on your own servers).

TK8

TK8 is a command-line tool for provisioning Kubernetes clusters that leverages both

Terraform (for creating cloud servers) and Kubespray (for installing Kubernetes on

them). Written in Go (of course), it supports installation on AWS, OpenStack, and

bare-metal servers, with support for Azure and Google Cloud in the pipeline.

TK8 not only builds a Kubernetes cluster, but will also install optional add-ons for

you, including Jmeter Cluster for load testing, Prometheus for monitoring, Jaeger,

Linkerd or Zipkin for tracing, Ambassador API Gateway with Envoy for ingress and

load balancing, Istio for service mesh support, Jenkins-X for CI/CD, and Helm or

Kedge for packaging on Kubernetes.

Kubernetes The Hard Way

Kelsey Hightower’s Kubernetes The Hard Way tutorial is perhaps best considered not as a Kubernetes setup tool or installation guide, but an opinionated walkthrough of

the process of building a Kubernetes cluster which illustrates the complexity of the

moving parts involved. Nonetheless, it’s very instructive, and it’s an exercise worth

Kubernetes Installers | 45

doing for anyone considering running Kubernetes, even as a managed service, just to

get a sense of how it all works under the hood.

kubeadm

kubeadm is part of the Kubernetes distribution, and it aims to help you install and maintain a Kubernetes cluster according to best practices. kubeadm does not provision the infrastructure for the cluster itself, so it’s suitable for installing Kubernetes on

bare-metal servers or cloud instances of any flavor.

Many of the other tools and services we’ll mention in this chapter use kubeadm inter‐

nally to handle cluster admin operations, but there’s nothing to stop you using it

directly, if you want to.

Tarmak

Tarmak is a Kubernetes cluster life cycle management tool that is focused on making

it easy and reliable to modify and upgrade cluster nodes. While many tools deal with

this by simply replacing the node, this can take a long time and often involves moving

a lot of data around between nodes during the rebuild process. Instead, Tarmak can

repair or upgrade the node in place.

Tarmak uses Terraform under the hood to provision the cluster nodes, and Puppet to

manage configuration on the nodes themselves. This makes it quicker and safer to

roll out changes to node configuration.

Rancher Kubernetes Engine (RKE)

RKE aims to be a simple, fast Kubernetes installer. It doesn’t provision the nodes for

you, and you have to install Docker on the nodes yourself before you can use RKE to

install the cluster. RKE supports high availability of the Kubernetes control plane.

Puppet Kubernetes Module

Puppet is a powerful, mature, and sophisticated general configuration management

tool that is very widely used, and has a large open source module ecosystem. The offi‐

cially supported Kubernetes module installs and configures Kubernetes on existing

nodes, including high availability support for both the control plane and etcd.

Kubeformation

Kubeformation is an online Kubernetes configurator that lets you choose the options

for your cluster using a web interface, and will then generate configuration templates

for your particular cloud provider’s automation API (for example, Deployment Man‐

46 | Chapter 3: Getting Kubernetes

ager for Google Cloud, or Azure Resource Manager for Azure). Support for other

cloud providers is in the pipeline.

Using Kubeformation is perhaps not as simple as some other tools, but because it is a

wrapper around existing automation tools such as Deployment Manager, it is very

flexible. If you already manage your Google Cloud infrastructure using Deployment

Manager, for example, Kubeformation will fit into your existing workflow perfectly.

Buy or Build: Our Recommendations

This has necessarily been a quick tour of some of the options available for managing

Kubernetes clusters, because the range of offerings is large and varied, and growing

all the time. However, we can make a few recommendations based on commonsense

principles. One of these is the philosophy of run less software.

Run Less Software

There are three pillars of the Run Less Software philosophy, all of which will help you

manipulate time and defeat your enemies.

1. Choose standard technology

2. Outsource undifferentiated heavy lifting

3. Create enduring competitive advantage

—Rich Archbold

While using innovative new technologies is fun and exciting, it doesn’t always make

sense from a business point of view. Using boring software that everybody else is

using is generally a good bet. It probably works, it’s probably well-supported, and

you’re not going to be the one taking the risks and dealing with the inevitable bugs.

If you’re running containerized workloads and cloud native applications, Kubernetes

is the boring choice, in the best possible way. Given that, you should opt for the most

mature, stable, and widely used Kubernetes tools and services.

 Undifferentiated heavy lifting is a term coined at Amazon to denote all the hard work

and effort that goes into things like installing and managing software, maintaining

infrastructure, and so on. There’s nothing special about this work; it’s the same for

you as it is for every other company out there. It costs you money, instead of making

you money.

The run less software philosophy says that you should outsource undifferentiated

heavy lifting, because it’ll be cheaper in the long run, and it frees up resources you can

use to work on your core business.

Buy or Build: Our Recommendations | 47

Use Managed Kubernetes if You Can

With the run less software principles in mind, we recommend that you outsource

your Kubernetes cluster operations to a managed service. Installing, configuring,

maintaining, securing, upgrading, and making your Kubernetes cluster reliable is

undifferentiated heavy lifting, so it makes sense for almost all businesses not to do it

themselves:

 Cloud native is not a cloud provider, it’s not Kubernetes, it’s not containers, it’s

not a technology. It’s the practice of accelerating your business by not running

stuff that doesn’t differentiate you.

—Justin Garrison

In the managed Kubernetes space, Google Kubernetes Engine (GKE) is the clear win‐

ner. While other cloud providers may catch up in a year or two, Google is still way

ahead and will remain so for some time to come.

For companies that need to be independent of a single cloud provider, and want 24-

hour-a-day technical support from a trusted brand, Heptio Kubernetes Subscription

is worth looking at.

If you want managed high availability for your cluster control plane, but need the

flexibility of running your own worker nodes, consider Stackpoint.

But What About Vendor Lock-in?

If you commit to a managed Kubernetes service from a particular vendor, such as

Google Cloud, will that lock you in to the vendor and reduce your options in the

future? Not necessarily. Kubernetes is a standard platform, so any applications and

services you build to run on Google Kubernetes Engine will also work on any other

certified Kubernetes provider’s system. Just using Kubernetes in the first place is a big

step toward escaping vendor lock-in.

Does managed Kubernetes make you more prone to lock-in than running your own

Kubernetes cluster? We think it’s the other way around. Self-hosting Kubernetes

involves a lot of machinery and configuration to maintain, all of which is intimately

tied in to a specific cloud provider’s API. Provisioning AWS virtual machines to run

Kubernetes, for example, requires completely different code than the same operation

on Google Cloud. Some Kubernetes setup assistants, like the ones we’ve mentioned in

this chapter, support multiple cloud providers, but many don’t.

Part of the point of Kubernetes is to abstract away the technical details of the cloud

platform, and present developers with a standard, familiar interface that works the

same way whether it happens to be running on Azure or Google Cloud. As long as

you design your applications and automation to target Kubernetes itself, rather than

48 | Chapter 3: Getting Kubernetes

the underlying cloud infrastructure, you’re as free from vendor lock-in as you can

reasonably be.

Use Standard Kubernetes Self-Hosting Tools if You Must

If you have special requirements which mean that managed Kubernetes offerings

won’t work for you, only then should you consider running Kubernetes yourself.

If that’s the case, you should go with the most mature, powerful, and widely used

tools available. We recommend kops or Kubespray, depending on your requirements.

If you know that you’ll be staying with a single cloud provider long-term, especially if

it’s AWS, use kops.

On the other hand, if you need your cluster to span multiple clouds or platforms,

including bare-metal servers, and you want to keep your options open, you should

use Kubespray.

When Your Choices Are Limited

There may be business, rather than technical, reasons, why fully managed Kubernetes

services aren’t an option for you. If you have an existing business relationship with a

hosting company or cloud provider that doesn’t offer a managed Kubernetes service,

that will necessarily limit your choices.

However, it may be possible for you to use a turnkey solution instead, such as Stack‐

point or Containership. These options provide a managed service for your Kuber‐

netes master nodes, but connect them to worker nodes running on your own

infrastructure. Since most of the administration overhead of Kubernetes is in setting

up and maintaining the master nodes, this is a good compromise.

Bare-Metal and On-Prem

It may come as a surprise to you that being cloud native doesn’t actually require being

 in the cloud, in the sense of outsourcing your infrastructure to a public cloud provider

such as Azure or AWS.

Many organizations run part or all of their infrastructure on bare-metal hardware,

whether colocated in data centers or on-premises. Everything we’ve said in this book

about Kubernetes and containers applies just as well to in-house infrastructure as it

does to the cloud.

You can run Kubernetes on your own hardware machines; if your budget is limited,

you can even run it on a stack of Raspberry Pis (Figure 3-3). Some businesses run a

 private cloud, consisting of virtual machines hosted by on-prem hardware.

Buy or Build: Our Recommendations | 49

 Figure 3-3. Kubernetes on a budget: a Raspberry Pi cluster (photo by David Merrick)

Clusterless Container Services

If you really want to minimize the overhead of running container workloads, there’s

yet another level above fully managed Kubernetes services. These are so-called clus‐

 terless services, such as Azure Container Instances or Amazon’s Fargate. Although

there really is a cluster under the hood, you don’t have access to it via tools like

kubectl. Instead, you specify a container image to run, and a few parameters like the

CPU and memory requirements of your application, and the service does the rest.

Amazon Fargate

According to Amazon, “Fargate is like EC2, but instead of a virtual machine, you get

a container.” Unlike ECS, there’s no need to provision cluster nodes yourself and then

connect them to a control plane. You just define a task, which is essentially a set of

instructions for how to run your container image, and launch it. Pricing is per-second

based on the amount of CPU and memory resources that the task consumes.

It’s probably fair to say that Fargate makes sense for simple, self-contained, long-

running compute tasks or batch jobs (such as data crunching) that don’t require

much customization or integration with other services. It’s also ideal for build con‐

tainers, which tend to be short-lived, and for any situation where the overhead of

managing worker nodes isn’t justified.

50 | Chapter 3: Getting Kubernetes

If you’re already using ECS with EC2 worker nodes, switching to Fargate will relieve

you of the need to provision and manage those nodes. Fargate is available now in

some regions for running ECS tasks, and is scheduled to support EKS by 2019.

Azure Container Instances (ACI)

Microsoft’s Azure Container Instances (ACI) service is similar to Fargate, but also offers integration with the Azure Kubernetes Service (AKS). For example, you can

configure your AKS cluster to provision temporary extra Pods inside ACI to handle

spikes or bursts in demand.

Similarly, you can run batch jobs in ACI in an ad hoc way, without having to keep idle

nodes around when there’s no work for them to do. Microsoft calls this idea serverless

 containers, but we find that terminology both confusing (serverless usually refers to

cloud functions, or functions-as-a-service) and inaccurate (there are servers; you just

can’t access them).

ACI is also integrated with Azure Event Grid, Microsoft’s managed event routing ser‐

vice. Using Event Grid, ACI containers can communicate with cloud services, cloud

functions, or Kubernetes applications running in AKS.

You can create, run, or pass data to ACI containers using Azure Functions. The

advantage of this is that you can run any workload from a cloud function, not just

those using the officially supported (blessed) languages, such as Python or JavaScript.

If you can containerize your workload, you can run it as a cloud function, with all the

associated tooling. For example, Microsoft Flow allows even nonprogrammers to

build up workflows graphically, connecting containers, functions, and events.

Summary

Kubernetes is everywhere! Our journey through the extensive landscape of Kuber‐

netes tools, services, and products has been necessarily brief, but we hope you found

it useful.

While our coverage of specific products and features is as up to date as we can make

it, the world moves pretty fast, and we expect a lot will have changed even by the time

you read this.

However, we think the basic point stands: it’s not worth managing Kubernetes clus‐

ters yourself if a service provider can do it better and cheaper.

In our experience of consulting for companies migrating to Kubernetes, this is often a

surprising idea, or at least not one that occurs to a lot of people. We often find that

organizations have taken their first steps with self-hosted clusters, using tools like

Summary | 51

kops, and hadn’t really thought about using a managed service such as GKE. It’s well

worth thinking about.

More things to bear in mind:

• Kubernetes clusters are made up of master nodes, which run the control plane,

and worker nodes, which run your workloads.

• Production clusters must be highly available, meaning that the failure of a master

node won’t lose data or affect the operation of the cluster.

• It’s a long way from a simple demo cluster to one that’s ready for critical produc‐

tion workloads. High availability, security, and node management are just some

of the issues involved.

• Managing your own clusters requires a significant investment of time, effort, and

expertise. Even then, you can still get it wrong.

• Managed services like Google Kubernetes Engine do all the heavy lifting for you,

at much lower cost than self-hosting.

• Turnkey services are a good compromise between self-hosted and fully managed

Kubernetes. Turnkey providers like Stackpoint manage the master nodes for you,

while you run worker nodes on your own machines.

• If you have to host your own cluster, kops is a mature and widely used tool that

can provision and manage production-grade clusters on AWS and Google Cloud.

• You should use managed Kubernetes if you can. This is the best option for most

businesses in terms of cost, overhead, and quality.

• If managed services aren’t an option, consider using turnkey services as a good

compromise.

• Don’t self-host your cluster without sound business reasons. If you do self-host,

don’t underestimate the engineering time involved for the initial setup and ongo‐

ing maintenance overhead.

52 | Chapter 3: Getting Kubernetes

CHAPTER 4

Working with Kubernetes Objects

I can’t understand why people are frightened of new ideas. I’m frightened of the old

ones.

—John Cage

In Chapter 2, you built and deployed an application to Kubernetes. In this chapter,

you’ll learn about the fundamental Kubernetes objects involved in that process: Pods,

Deployments, and Services. You’ll also find out how to use the essential Helm tool to

manage application in Kubernetes.

After working through the example in “Running the Demo App” on page 30, you

should have a container image running in the Kubernetes cluster, but how does that

actually work? Under the hood, the kubectl run command creates a Kubernetes

resource called a Deployment. So what’s that? And how does a Deployment actually

run your container image?

Deployments

Think back to how you ran the demo app with Docker. The docker container run

command started the container, and it ran until you killed it with docker stop.

But suppose that the container exits for some other reason; maybe the program

crashed, or there was a system error, or your machine ran out of disk space, or a cos‐

mic ray hit your CPU at the wrong moment (unlikely, but it does happen). Assuming

this is a production application, that means you now have unhappy users, until some‐

one can get to a terminal and type docker container run to start the container

again.

That’s an unsatisfactory arrangement. What you really want is a kind of supervisor

program, which continually checks that the container is running, and if it ever stops,

53

starts it again immediately. On traditional servers, you can use a tool like systemd,

runit, or supervisord to do this; Docker has something similar, and you won’t be

surprised to know that Kubernetes has a supervisor feature too: the Deployment.

Supervising and Scheduling

For each program that Kubernetes has to supervise, it creates a corresponding

Deployment object, which records some information about the program: the name of

the container image, the number of replicas you want to run, and whatever else it

needs to know to start the container.

Working together with the Deployment resource is a kind of Kubernetes object called

a control er. Controllers watch the resources they’re responsible for, making sure

they’re present and working. If a given Deployment isn’t running enough replicas, for

whatever reason, the controller will create some new ones. (If there were too many

replicas for some reason, the controller would shut down the excess ones. Either way,

the controller makes sure that the real state matches the desired state.)

Actually, a Deployment doesn’t manage replicas directly: instead, it automatically cre‐

ates an associated object called a ReplicaSet, which handles that. We’ll talk more

about ReplicaSets in a moment in “ReplicaSets” on page 56, but since you generally

interact only with Deployments, let’s get more familiar with them first.

Restarting Containers

At first sight, the way Deployments behave might be a little surprising. If your con‐

tainer finishes its work and exits, the Deployment will restart it. If it crashes, or if you

kill it with a signal, or terminate it with kubectl, the Deployment will restart it. (This

is how you should think about it conceptually; the reality is a little more complicated,

as we’ll see.)

Most Kubernetes applications are designed to be long-running and reliable, so this

behavior makes sense: containers can exit for all sorts of reasons, and in most cases all

a human operator would do is restart them, so that’s what Kubernetes does by default.

It’s possible to change this policy for an individual container: for example, to never

restart it, or to restart it only on failure, not if it exited normally (see “Restart Policies”

on page 149). However, the default behavior (restart always) is usually what you want.

A Deployment’s job is to watch its associated containers and make sure that the speci‐

fied number of them is always running. If there are fewer, it will start more. If there

are too many, it will terminate some. This is much more powerful and flexible than a

traditional supervisor-type program.

54 | Chapter 4: Working with Kubernetes Objects

Querying Deployments

You can see all the Deployments active in your current namespace (see “Using Name‐

spaces” on page 77) by running the following command:

kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

demo 1 1 1 1 21h

To get more detailed information on this specific Deployment, run the following

command:

kubectl describe deployments/demo

Name: demo

Namespace: default

CreationTimestamp: Tue, 08 May 2018 12:20:50 +0100

...

As you can see, there’s a lot of information here, most of which isn’t important for

now. Let’s look more closely at the Pod Template section, though:

Pod Template:

Labels: app=demo

Containers:

demo:

Image: cloudnatived/demo:hello

Port: 8888/TCP

Host Port: 0/TCP

Environment: <none>

Mounts: <none>

Volumes: <none>

You know that a Deployment contains the information Kubernetes needs to run the

container, and here it is. But what’s a Pod Template? Actually, before we answer that,

what’s a Pod?

Pods

A Pod is the Kubernetes object that represents a group of one or more containers

(pod is also the name for a group of whales, which fits in with the vaguely seafaring

flavor of Kubernetes metaphors).

Why doesn’t a Deployment just manage an individual container directly? The answer

is that sometimes a set of containers needs to be scheduled together, running on the

same node, and communicating locally, perhaps sharing storage.

For example, a blog application might have one container that syncs content with a

Git repository, and an Nginx web server container that serves the blog content to

users. Since they share data, the two containers need to be scheduled together in a

Pods | 55

Pod. In practice, though, many Pods only have one container, as in this case. (See

“What Belongs in a Pod?” on page 136 for more about this.)

So a Pod specification (spec for short) has a list of Containers, and in our example

there is only one container, demo:

demo:

Image: cloudnatived/demo:hello

Port: 8888/TCP

Host Port: 0/TCP

Environment: <none>

Mounts: <none>

The Image spec will be, in your case, YOUR_DOCKER_ID/myhello, and together with the

port number, that’s all the information the Deployment needs to start the Pod and

keep it running.

And that’s an important point. The kubectl run command didn’t actually create the

Pod directly. Instead it created a Deployment, and then the Deployment started the

Pod. The Deployment is a declaration of your desired state: “A Pod should be running

with the myhello container inside it.”

ReplicaSets

We said that Deployments start Pods, but there’s a little more to it than that. In fact,

Deployments don’t manage Pods directly. That’s the job of the ReplicaSet object.

A ReplicaSet is responsible for a group of identical Pods, or replicas. If there are too

few (or too many) Pods, compared to the specification, the ReplicaSet controller will

start (or stop) some Pods to rectify the situation.

Deployments, in turn, manage ReplicaSets, and control how the replicas behave when

you update them—by rolling out a new version of your application, for example (see

“Deployment Strategies” on page 239). When you update the Deployment, a new

ReplicaSet is created to manage the new Pods, and when the update is completed, the

old ReplicaSet and its Pods are terminated.

In Figure 4-1, each ReplicaSet (V1, V2, V3) represents a different version of the appli‐

cation, with its corresponding Pods.

56 | Chapter 4: Working with Kubernetes Objects

 Figure 4-1. Deployments, ReplicaSets, and Pods

Usually, you won’t interact with ReplicaSets directly, since Deployments do the work

for you—but it’s useful to know what they are.

Maintaining Desired State

Kubernetes controllers continually check the desired state specified by each resource

against the actual state of the cluster, and make any necessary adjustments to keep

them in sync. This process is called the reconciliation loop, because it loops forever,

trying to reconcile the actual state with the desired state.

For example, when you first create the demo Deployment, there is no demo Pod run‐

ning. So Kubernetes will start the required Pod immediately. If it were ever to stop,

Kubernetes will start it again, so long as the Deployment still exists.

Let’s verify that right now by stopping the Pod manually. First, check that the Pod is

indeed running:

kubectl get pods --selector app=demo

NAME READY STATUS RESTARTS AGE

demo-54df94b7b7-qgtc6 1/1 Running 1 22h

Now, run the following command to stop the Pod:

kubectl delete pods --selector app=demo

pod "demo-54df94b7b7-qgtc6" deleted

List the Pods again:

kubectl get pods --selector app=demo

NAME READY STATUS RESTARTS AGE

demo-54df94b7b7-hrspp 1/1 Running 0 5s

demo-54df94b7b7-qgtc6 0/1 Terminating 1 22h

Maintaining Desired State | 57

You can see the original Pod shutting down (its status is Terminating), but it’s already

been replaced by a new Pod, which is only five seconds old. That’s the reconciliation

loop at work.

You told Kubernetes, by means of the Deployment you created, that the demo Pod

must always be running. It takes you at your word, and even if you delete the Pod

yourself, Kubernetes assumes you must have made a mistake, and helpfully starts a

new Pod to replace it for you.

Once you’ve finished experimenting with the Deployment, shut it down and clean up

using the following command:

kubectl delete all --selector app=demo

pod "demo-54df94b7b7-hrspp" deleted

service "demo" deleted

deployment.apps "demo" deleted

The Kubernetes Scheduler

We’ve said things like the Deployment will create Pods and Kubernetes will start the

 required Pod, without really explaining how that happens.

The Kubernetes scheduler is the component responsible for this part of the process.

When a Deployment (via its associated ReplicaSet) decides that a new replica is

needed, it creates a Pod resource in the Kubernetes database. Simultaneously, this Pod

is added to a queue, which is like the scheduler’s inbox.

The scheduler’s job is to watch its queue of unscheduled Pods, grab the next Pod from

it, and find a node to run it on. It will use a few different criteria, including the Pod’s

resource requests, to choose a suitable node, assuming there is one available (we’ll

talk more about this process in Chapter 5).

Once the Pod has been scheduled on a node, the kubelet running on that node picks

it up and takes care of actually starting its containers (see “Node Components” on

page 35).

When you deleted a Pod in “Maintaining Desired State” on page 57, it was the node’s

kubelet that spotted this and started a replacement. It knows that a demo Pod should

be running on its node, and if it doesn’t find one, it will start one. (What would hap‐

pen if you shut the node down altogether? Its Pods would become unscheduled and

go back into the scheduler’s queue, to be reassigned to other nodes.)

Stripe engineer Julia Evans has written a delightfully clear explanation of how sched‐

uling works in Kubernetes.

58 | Chapter 4: Working with Kubernetes Objects

Resource Manifests in YAML Format

Now that you know how to run an application in Kubernetes, is that it? Are you

done? Not quite. Using the kubectl run command to create a Deployment is useful,

but limited. Suppose you want to change something about the Deployment spec: the

image name or version, say. You could delete the existing Deployment (using kubectl

delete) and create a new one with the right fields. But let’s see if we can do better.

Because Kubernetes is inherently a declarative system, continuously reconciling actual

state with desired state, all you need to do is change the desired state—the Deploy‐

ment spec—and Kubernetes will do the rest. How do you do that?

Resources Are Data

All Kubernetes resources, such as Deployments or Pods, are represented by records in

its internal database. The reconciliation loop watches the database for any changes to

those records, and takes the appropriate action. In fact, all the kubectl run com‐

mand does is add a new record in the database corresponding to a Deployment, and

Kubernetes does the rest.

But you don’t need to use kubectl run in order to interact with Kubernetes. You can

also create and edit the resource manifest (the specification for the desired state of the

resource) directly. You can keep the manifest file in a version control system, and

instead of running imperative commands to make on-the-fly changes, you can

change your manifest files and then tell Kubernetes to read the updated data.

Deployment Manifests

The usual format for Kubernetes manifest files is YAML, although it can also under‐

stand the JSON format. So what does the YAML manifest for a Deployment look like?

Have a look at our example for the demo application (hel o-k8s/k8s/deployment.yaml):

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: demo

labels:

app: demo

spec:

replicas: 1

selector:

matchLabels:

app: demo

template:

metadata:

labels:

app: demo

Resource Manifests in YAML Format | 59

 spec:

containers:

- name: demo

image: cloudnatived/demo:hello

ports:

- containerPort: 8888

At first glance, this looks complicated, but it’s mostly boilerplate. The only interesting

parts are the same information that you’ve already seen in various forms: the con‐

tainer image name and port. When you gave this information to kubectl run earlier,

it created the equivalent of this YAML manifest behind the scenes and submitted it to

Kubernetes.

Using kubectl apply

To use the full power of Kubernetes as a declarative infrastructure as code system,

submit YAML manifests to the cluster yourself, using the kubectl apply command.

Try it with our example Deployment manifest, hel o-k8s/k8s/deployment.yaml. 1

Run the following commands in your copy of the demo repo:

cd hello-k8s

kubectl apply -f k8s/deployment.yaml

deployment.apps "demo" created

After a few seconds, a demo Pod should be running:

kubectl get pods --selector app=demo

NAME READY STATUS RESTARTS AGE

demo-6d99bf474d-z9zv6 1/1 Running 0 2m

We’re not quite done, though, because in order to connect to the demo Pod with a web

browser, we’re going to create a Service, which is a Kubernetes resource that lets you

connect to your deployed Pods (more on this in a moment).

First, let’s explore what a Service is, and why we need one.

Service Resources

Suppose you want to make a network connection to a Pod (such as our example

application). How do you do that? You could find out the Pod’s IP address and con‐

nect directly to that address and the app’s port number. But the IP address may

change when the Pod is restarted, so you’ll have to keep looking it up to make sure it’s

up to date.

1 k8s, pronounced kates, is a common abbreviation for Kubernetes, following the geeky pattern of abbreviating

words as a numeronym: their first and last letters, plus the number of letters in between (k-8-s). See also i18n

(internationalization), a11y (accessibility), and o11y (observability).

60 | Chapter 4: Working with Kubernetes Objects

Worse, there may be multiple replicas of the Pod, each with different addresses. Every

other application that needs to contact the Pod would have to maintain a list of those

addresses, which doesn’t sound like a great idea.

Fortunately, there’s a better way: a Service resource gives you a single, unchanging IP

address or DNS name that will be automatically routed to any matching Pod. Later on

in “Ingress Resources” on page 171 we will talk about the Ingress resource, which

allows for more advanced routing and using TLS certificates.

But for now, let’s take a closer look at how a Kubernetes Service works.

You can think of a Service as being like a web proxy or a load balancer, forwarding

requests to a set of backend Pods (Figure 4-2). However, it isn’t restricted to web

ports: a Service can forward traffic from any port to any other port, as detailed in the

ports part of the spec.

 Figure 4-2. A Service provides a persistent endpoint for a group of Pods

Here’s the YAML manifest of the Service for our demo app:

apiVersion: v1

kind: Service

metadata:

name: demo

labels:

app: demo

spec:

ports:

- port: 9999

protocol: TCP

targetPort: 8888

selector:

app: demo

type: ClusterIP

You can see that it looks somewhat similar to the Deployment resource we showed

earlier. However, the kind is Service, instead of Deployment, and the spec just

includes a list of ports, plus a selector and a type.

Resource Manifests in YAML Format | 61

If you zoom in a little, you can see that the Service is forwarding its port 9999 to the

Pod’s port 8888:

...

ports:

- port: 9999

protocol: TCP

targetPort: 8888

The selector is the part that tells the Service how to route requests to particular

Pods. Requests will be forwarded to any Pods matching the specified set of labels; in

this case, just app: demo (see “Labels” on page 153). In our example, there’s only one

Pod that matches, but if there were multiple Pods, the Service would send each

request to a randomly selected one.2

In this respect, a Kubernetes Service is a little like a traditional load balancer, and, in

fact, both Services and Ingresses can automatically create cloud load balancers (see

“Ingress Resources” on page 171).

For now, the main thing to remember is that a Deployment manages a set of Pods for

your application, and a Service gives you a single entry point for requests to those

Pods.

Go ahead and apply the manifest now, to create the Service:

kubectl apply -f k8s/service.yaml

service "demo" created

kubectl port-forward service/demo 9999:8888

Forwarding from 127.0.0.1:9999 -> 8888

Forwarding from [::1]:9999 -> 8888

As before, kubectl port-forward will connect the demo service to a port on your

local machine, so that you can connect to http://localhost:9999/ with your web

browser.

Once you’re satisfied that everything is working correctly, run the following com‐

mand to clean up before moving on to the next section:

kubectl delete -f k8s/

2 This is the default load balancing algorithm; Kubernetes versions 1.10+ support other algorithms too, such as

 least connection. See https://kubernetes.io/blog/2018/07/09/ipvs-based-in-cluster-load-balancing-deep-dive/.

62 | Chapter 4: Working with Kubernetes Objects

You can use kubectl delete with a label selector, as we did earlier

on, to delete all resources that match the selector (see “Labels” on

page 153). Alternatively, you can use kubectl delete -f, as here,

with a directory of manifests. All the resources described by the

manifest files will be deleted.

Exercise

Modify the k8s/deployment.yaml file to change the number of replicas to 3. Reapply

the manifest using kubectl apply and check that you get three demo Pods instead of

one, using kubectl get pods.

Querying the Cluster with kubectl

The kubectl tool is the Swiss Army knife of Kubernetes: it applies configuration, cre‐

ates, modifies, and destroys resources, and can also query the cluster for information

about the resources that exist, as well as their status.

We’ve already seen how to use kubectl get to query Pods and Deployments. You can

also use it to see what nodes exist in your cluster:

kubectl get nodes

NAME STATUS ROLES AGE VERSION

docker-for-desktop Ready master 1d v1.10.0

If you want to see resources of all types, use kubectl get all. (In fact, this doesn’t

show literally al resources, just the most common types, but we won’t quibble about

that for now.)

To see comprehensive information about an individual Pod (or any other resource),

use kubectl describe:

kubectl describe pod/demo-dev-6c96484c48-69vss

Name: demo-dev-6c96484c48-69vss

Namespace: default

Node: docker-for-desktop/10.0.2.15

Start Time: Wed, 06 Jun 2018 10:48:50 +0100

...

Containers:

demo:

Container ID: docker://646aaf7c4baf6d...

Image: cloudnatived/demo:hello

...

Conditions:

Type Status

Initialized True

Ready True

PodScheduled True

Resource Manifests in YAML Format | 63

...

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Normal Scheduled 1d default-scheduler Successfully assigned demo-dev...

Normal Pulling 1d kubelet pulling image "cloudnatived/demo...

...

In the example output, you can see that kubectl gives you some basic information

about the container itself, including its image identifier and status, along with an

ordered list of events that have happened to the container. (We’ll learn a lot more

about the power of kubectl in Chapter 7.)

Taking Resources to the Next Level

You now know everything you need to know to deploy applications to Kubernetes

clusters using declarative YAML manifests. But there’s a lot of repetition in these files:

for example, you’ve repeated the name demo, the label selector app: demo, and the

port 8888 several times.

Shouldn’t you be able to just specify those values once, and then reference them

wherever they occur through the Kubernetes manifests?

For example, it would be great to be able to define variables called something like

container.name and container.port, and then use them wherever they’re needed in

the YAML files. Then, if you needed to change the name of the app or the port num‐

ber it listens on, you’d only have to change them in one place, and all the manifests

would be updated automatically.

Fortunately, there’s a tool for that, and in the final section of this chapter we’ll show

you a little of what it can do.

Helm: A Kubernetes Package Manager

One popular package manager for Kubernetes is called Helm, and it works just the

way we’ve described in the previous section. You can use the helm command-line tool

to install and configure applications (your own or anyone else’s), and you can create

packages called Helm charts, which completely specify the resources needed to run

the application, its dependencies, and its configurable settings.

Helm is part of the Cloud Native Computing Foundation family of projects (see

“Cloud Native” on page 14), which reflects its stability and widespread adoption.

64 | Chapter 4: Working with Kubernetes Objects

It’s important to realize that a Helm chart, unlike the binary soft‐

ware packages used by tools like APT or Yum, doesn’t actually

include the container image itself. Instead, it simply contains meta‐

data about where the image can be found, just as a Kubernetes

Deployment does.

When you install the chart, Kubernetes itself will locate and down‐

load the binary container image from the place you specified. In

fact, a Helm chart is really just a convenient wrapper around

Kubernetes YAML manifests.

Installing Helm

Follow the Helm installation instructions for your operating system.

Once you have Helm installed, you will need to create some Kubernetes resources to

authorize it for access to your cluster. There’s a suitable YAML file in the example

repo, in the hel o-helm directory, named helm-auth.yaml. To apply it, run the follow‐

ing commands:

cd ../hello-helm

kubectl apply -f helm-auth.yaml

serviceaccount "tiller" created

clusterrolebinding.rbac.authorization.k8s.io "tiller" created

Now that the necessary permissions are in place, you can initialize Helm for access to

the cluster, using this command:

helm init --service-account tiller

$HELM_HOME has been configured at /Users/john/.helm.

It may take five minutes or so for Helm to finish initializing itself. To verify that Helm

is up and working, run:

helm version

Client: &version.Version{SemVer:"v2.9.1",

GitCommit:"20adb27c7c5868466912eebdf6664e7390ebe710", GitTreeState:"clean"}

Server: &version.Version{SemVer:"v2.9.1",

GitCommit:"20adb27c7c5868466912eebdf6664e7390ebe710", GitTreeState:"clean"}

Once this command succeeds, you’re ready to start using Helm. If you see an Error:

cannot connect to Tiller message, wait a few minutes and try again.

Installing a Helm Chart

What would the Helm chart for our demo application look like? In the hel o-helm

directory, you’ll see a k8s subdirectory, which in the previous example (hello-k8s)

contained just the Kubernetes manifest files to deploy the application. Now it con‐

tains a Helm chart, in the demo directory:

Helm: A Kubernetes Package Manager | 65

ls k8s/demo

Chart.yaml prod-values.yaml staging-values.yaml templates

values.yaml

We’ll see what all these files are for in “What’s Inside a Helm Chart?” on page 220, but

for now, let’s use Helm to install the demo application. First, clean up the resources

from any previous deployments:

kubectl delete all --selector app=demo

Then run the following command:

helm install --name demo ./k8s/demo

NAME: demo

LAST DEPLOYED: Wed Jun 6 10:48:50 2018

NAMESPACE: default

STATUS: DEPLOYED

RESOURCES:

==> v1/Service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

demo-service ClusterIP 10.98.231.112 <none> 80/TCP 0s

==> v1/Deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

demo 1 1 1 0 0s

==> v1/Pod(related)

NAME READY STATUS RESTARTS AGE

demo-6c96484c48-69vss 0/1 ContainerCreating 0 0s

You can see that Helm has created a Deployment resource (which starts a Pod) and a

Service, just as in the previous example. The helm install does this by creating a

Kubernetes object called a Helm release.

Charts, Repositories, and Releases

These are the three most important Helm terms you need to know:

• A chart is a Helm package, containing all the resource definitions necessary to

run an application in Kubernetes.

• A repository is a place where charts can be collected and shared.

• A release is a particular instance of a chart running in a Kubernetes cluster.

One chart can often be installed many times into the same cluster. For example, you

might be running multiple copies of the Nginx web server chart, each serving a dif‐

ferent site. Each separate instance of the chart is a distinct release.

66 | Chapter 4: Working with Kubernetes Objects

Each release has a unique name, which you specify with the -name flag to helm

install. (If you don’t specify a name, Helm will choose a random one for you. You

probably won’t like it.)

Listing Helm Releases

To check what releases you have running at any time, run helm list:

helm list

NAME REVISION UPDATED STATUS CHART NAMESPACE

demo 1 Wed Jun 6 10:48:50 2018 DEPLOYED demo-1.0.1 default

To see the exact status of a particular release, run helm status followed by the name

of the release. You’ll see the same information that you did when you first deployed

the release: a list of all the Kubernetes resources associated with the release, including

Deployments, Pods, and Services.

Later in the book, we’ll show you how to build your own Helm charts for your appli‐

cations (see “What’s Inside a Helm Chart?” on page 220). For now, just know that

Helm is a handy way to install applications from public charts.

You can see the full list of public Helm charts on GitHub.

You can also get a list of available charts by running helm search

with no arguments (or helm search redis to search for a Redis

chart, for example).

Summary

This isn’t a book about Kubernetes internals (sorry, no refunds). Our aim is to show

you what Kubernetes can do, and bring you quickly to the point where you can run

real workloads in production. However, it’s useful to know at least some of the main

pieces of machinery you’ll be working with, such as Pods and Deployments. In this

chapter we’ve briefly introduced some of the most important ones.

As fascinating as the technology is to geeks like us, though, we’re also interested in

getting stuff done. Therefore, we haven’t exhaustively covered every kind of resource

Kubernetes provides, because there are a lot, and many of them you almost certainly

won’t need (at least, not yet).

The key points we think you need to know right now:

• The Pod is the fundamental unit of work in Kubernetes, specifying a single con‐

tainer or group of communicating containers that are scheduled together.

• A Deployment is a high-level Kubernetes resource that declaratively manages

Pods, deploying, scheduling, updating, and restarting them when necessary.

Summary | 67

• A Service is the Kubernetes equivalent of a load balancer or proxy, routing traffic

to its matching Pods via a single, well-known, durable IP address or DNS name.

• The Kubernetes scheduler watches for a Pod that isn’t yet running on any node,

finds a suitable node for it, and instructs the kubelet on that node to run the Pod.

• Resources like Deployments are represented by records in Kubernetes’s internal

database. Externally, these resources can be represented by text files (known as

 manifests) in YAML format. The manifest is a declaration of the desired state of

the resource.

• kubectl is the main tool for interacting with Kubernetes, allowing you to apply

manifests, query resources, make changes, delete resources, and do many other

tasks.

• Helm is a Kubernetes package manager. It simplifies configuring and deploying

Kubernetes applications, allowing you to use a single set of values (such as the

application name or listen port) and a set of templates to generate Kubernetes

YAML files, instead of having to maintain the raw YAML files yourself.

68 | Chapter 4: Working with Kubernetes Objects

CHAPTER 5

Managing Resources

Nothing is enough to the man for whom enough is too little.

—Epicurus

In this chapter we’ll look at how to make the most of your cluster: how to manage

and optimize resource usage, how to manage the life cycle of containers, and how to

partition the cluster using namespaces. We’ll also outline some techniques and best

practices for keeping down the cost of your cluster, while getting the most for your

money.

You’ll learn how to use resource requests, limits, and defaults, and how to optimize

them with the Vertical Pod Autoscaler; how to use readiness probes, liveness probes,

and Pod disruption budgets to manage containers; how to optimize cloud storage;

and how and when to use preemptible or reserved instances to control costs.

Understanding Resources

Suppose you have a Kubernetes cluster of a given capacity, with a reasonable number

of nodes of the right kind of size. How do you get the most bang for your buck out of

it? That is, how do you get the best possible utilization of the available cluster resour‐

ces for your workload, while still ensuring that you have enough headroom to deal

with demand spikes, node failures, and bad deployments?

To answer this, put yourself in the place of the Kubernetes scheduler and try to see

things from its point of view. The scheduler’s job is to decide where to run a given

Pod. Are there any nodes with enough free resources to run the Pod?

This question is impossible to answer unless the scheduler knows how much resource

the Pod will need to run. A Pod that needs 1 GiB of memory cannot be scheduled on

a node with only 100 MiB of free memory.

69

Similarly, the scheduler has to be able to take action when a greedy Pod is grabbing

too many resources and starving other Pods on the same node. But how much is too

much? In order to schedule Pods effectively, the scheduler has to know the minimum

and maximum allowable resource requirements for each Pod.

That’s where Kubernetes resource requests and limits come in. Kubernetes under‐

stands how to manage two kinds of resources: CPU and memory. There are other

important types of resources, too, such as network bandwidth, disk I/O operations

(IOPS), and disk space, and these may cause contention in the cluster, but Kubernetes

doesn’t yet have a way to describe Pods’ requirements for these.

Resource Units

CPU usage for Pods is expressed, as you might expect, in units of CPUs. One Kuber‐

netes CPU unit is equivalent to one AWS vCPU, one Google Cloud Core, one Azure

vCore, or one hyperthread on a bare-metal processor that supports hyperthreading.

In other words, 1 CPU in Kubernetes terms means what you think it does.

Because most Pods don’t need a whole CPU, requests and limits are usually expressed

in mil icpus (sometimes called mil icores). Memory is measured in bytes, or more

handily, mebibytes (MiB).

Resource Requests

A Kubernetes resource request specifies the minimum amount of that resource that

the Pod needs to run. For example, a resource request of 100m (100 millicpus) and

250Mi (250 MiB of memory) means that the Pod cannot be scheduled on a node with

less than those resources available. If there isn’t any node with enough capacity avail‐

able, the Pod will remain in a pending state until there is.

For example, if all your cluster nodes have two CPU cores and 4 GiB of memory, a

container that requests 2.5 CPUs will never be scheduled, and neither will one that

requests 5 GiB of memory.

Let’s see what resource requests would look like, applied to our demo application:

spec:

containers:

- name: demo

image: cloudnatived/demo:hello

ports:

- containerPort: 8888

resources:

 requests:

 memory: "10Mi"

 cpu: "100m"

70 | Chapter 5: Managing Resources

Resource Limits

A resource limit specifies the maximum amount of resource that a Pod is allowed to

use. A Pod that tries to use more than its allocated CPU limit will be throttled, reduc‐

ing its performance.

A Pod that tries to use more than the allowed memory limit, though, will be termi‐

nated. If the terminated Pod can be rescheduled, it will be. In practice, this may mean

that the Pod is simply restarted on the same node.

Some applications, such as network servers, can consume more and more resources

over time in response to increasing demand. Specifying resource limits is a good way

to prevent such hungry Pods from using more than their fair share of the cluster’s

capacity.

Here’s an example of setting resource limits on the demo application:

spec:

containers:

- name: demo

image: cloudnatived/demo:hello

ports:

- containerPort: 8888

resources:

 limits:

 memory: "20Mi"

 cpu: "250m"

Knowing what limits to set for a particular application is a matter of observation and

judgment (see “Optimizing Pods” on page 83).

Kubernetes allows resources to be overcommitted; that is, the sum of all the resource

limits of containers on a node can exceed the total resources of that node. This is a

kind of gamble: the scheduler is betting that, most of the time, most containers will

not need to hit their resource limits.

If this gamble fails, and total resource usage starts approaching the maximum

capacity of the node, Kubernetes will start being more aggressive in terminating con‐

tainers. Under conditions of resource pressure, containers that have exceeded their

requests, but not their limits, may still be terminated. 1

All other things being equal, if Kubernetes needs to terminate Pods, it will start with

the ones that have most exceeded their requests. Pods that are within their requests

will not be terminated except in very rare circumstances where Kubernetes would

otherwise be unable to run its system components, such as the kubelet.

1 It’s possible to customize this behavior for individual containers using Quality of Service (QoS) classes.

Understanding Resources | 71

Best Practice

Always specify resource requests and limits for your containers.

This helps Kubernetes schedule and manage your Pods properly.

Keep Your Containers Small

We mentioned in “Minimal Container Images” on page 26 that keeping your con‐

tainer images as small as possible is a good idea, for lots of reasons:

• Small containers build faster.

• The images take up less storage.

• Image pulls are faster.

• The attack surface is reduced.

If you’re using Go, you’re already way ahead, because Go can compile your applica‐

tion into a single statically linked binary. If there’s only one file in your container, it’s

about as small as it can be!

Managing the Container Life Cycle

We’ve seen that Kubernetes can best manage your Pods when it knows what their

CPU and memory requirements are. But it also has to know when a container is

working: that is, when it’s functioning properly and ready to handle requests.

It’s quite common for containerized applications to get into a stuck state, where the

process is still running, but it’s not serving any requests. Kubernetes needs a way to

detect this situation, so that it can restart the container to fix the problem.

Liveness Probes

Kubernetes lets you specify a liveness probe as part of the container spec: a health

check that determines whether or not the container is alive (that is, working).

For an HTTP server container, the liveness probe specification usually looks some‐

thing like this:

livenessProbe:

httpGet:

path: /healthz

port: 8888

initialDelaySeconds: 3

periodSeconds: 3

72 | Chapter 5: Managing Resources

The httpGet probe makes an HTTP request to a URI and port you specify; in this

case, /healthz on port 8888.

If your application doesn’t have a specific endpoint for a health check, you could

use /, or any valid URL for your application. It’s common practice, though, to create

a /healthz endpoint just for this purpose. (Why the z? Just to make sure it doesn’t

collide with an existing path like health, which could be a page about health infor‐

mation, for example).

If the application responds with an HTTP 2xx or 3xx status code, Kubernetes consid‐

ers it alive. If it responds with anything else, or doesn’t respond at all, the container is

considered dead, and will be restarted.

Probe Delay and Frequency

How soon should Kubernetes start checking your liveness probe? No application can

start instantly. If Kubernetes tried the liveness probe immediately after starting the

container, it would probably fail, causing the container to be restarted—and this loop

would repeat forever!

The initialDelaySeconds field lets you tell Kubernetes how long to wait before try‐

ing the first liveness probe, avoiding this loop of death situation.

Similarly, it wouldn’t be a good idea for Kubernetes to hammer your application with

requests for the healthz endpoint thousands of times a second. The periodSeconds

field specifies how often the liveness probe should be checked; in this example, every

three seconds.

Other Types of Probes

httpGet isn’t the only kind of probe available; for network servers that don’t speak

HTTP, you can use tcpSocket:

livenessProbe:

tcpSocket:

port: 8888

If a TCP connection to the specified port succeeds, the container is alive.

You can also run an arbitrary command on the container, using an exec probe:

readinessProbe:

exec:

command:

- cat

- /tmp/healthy

Managing the Container Life Cycle | 73

The exec probe runs the specified command inside the container, and the probe suc‐

ceeds if the command succeeds (that is, exits with a zero status). exec is usually more

useful as a readiness probe, and we’ll see how they’re used in the next section.

gRPC Probes

Although many applications and services communicate via HTTP, it’s increasingly

popular to use the gRPC protocol instead, especially for microservices. gRPC is an

efficient, portable, binary network protocol developed by Google and hosted by the

Cloud Native Computing Foundation.

httpGet probes will not work with gRPC servers, and although you could use a

tcpSocket probe instead, that only tells you that you can make a connection to the

socket, not that the server itself is working.

gRPC has a standard health checking protocol, which most gRPC services support,

and to interrogate this health check with a Kubernetes liveness probe you can use the

grpc-health-probe tool. If you add the tool to your container, you can check it using an exec probe.

Readiness Probes

Related to the liveness probe, but with different semantics, is the readiness probe.

Sometimes an application needs to signal to Kubernetes that it’s temporarily unable to

handle requests; perhaps because it’s performing some lengthy initialization process,

or waiting for some subprocess to complete. The readiness probe serves this function.

If your application doesn’t start listening for HTTP until it’s ready to serve, your read‐

iness probe can be the same as your liveness probe:

readinessProbe:

httpGet:

path: /healthz

port: 8888

initialDelaySeconds: 3

periodSeconds: 3

A container that fails its readiness probe will be removed from any Services that

match the Pod. This is like taking a failing node out of a load balancer pool: no traffic

will be sent to the Pod until its readiness probe starts succeeding again.

Normally, when a Pod starts, Kubernetes will start sending it traffic as soon as the

container is in a running state. However, if the container has a readiness probe,

Kubernetes will wait until the probe succeeds before sending it any requests, so that

users won’t see errors from unready containers. This is critically important for zero-

downtime upgrades (see “Deployment Strategies” on page 239 for more about these).

74 | Chapter 5: Managing Resources

A container that is not ready will still be shown as Running, but the READY column

will show one or more unready containers in the Pod:

kubectl get pods

NAME READY STATUS RESTARTS AGE

readiness-test 0/1 Running 0 56s

Readiness probes should only return HTTP 200 OK status.

Although Kubernetes itself considers both 2xx and 3xx status codes

as ready, cloud load balancers may not. If you’re using an Ingress

resource coupled with a cloud load balancer (see “Ingress Resour‐

ces” on page 171), and your readiness probe returns a 301 redirect,

for example, the load balancer may flag all your Pods as unhealthy.

Make sure your readiness probes only return a 200 status code.

File-Based Readiness Probes

Alternatively, you could have the application create a file on the container’s filesystem

called something like /tmp/healthy, and use an exec readiness probe to check for the

presence of that file.

This kind of readiness probe can be useful, because if you want to take the container

temporarily out of service to debug a problem, you can attach to the container and

delete the /tmp/healthy file. The next readiness probe will fail, and Kubernetes will

remove the container from any matching Services. (A better way to do this, though, is

to adjust the container’s labels so that it no longer matches the service: see “Service

Resources” on page 60.)

You can now inspect and troubleshoot the container at your leisure. Once you’re

done, you can either terminate the container and deploy a fixed version, or put the

probe file back in place, so that the container will start receiving traffic again.

Best Practice

Use readiness probes and liveness probes to let Kubernetes know

when your application is ready to handle requests, or when it has a

problem and needs to be restarted.

minReadySeconds

By default, a container or Pod is considered ready the moment its readiness probe

succeeds. In some cases, you may want to run the container for a short while to make

sure it is stable. During a deployment, Kubernetes waits until each new Pod is ready

before starting the next (see “Rolling Updates” on page 239). If a faulty container

crashes straight away, this will halt the rollout, but if it takes a few seconds to crash,

all its replicas might be rolled out before you discover the problem.

Managing the Container Life Cycle | 75

To avoid this, you can set the minReadySeconds field on the container. A container or

Pod will not be considered ready until its readiness probe has been up for minReady

Seconds (default 0).

Pod Disruption Budgets

Sometimes Kubernetes needs to stop your Pods even though they’re alive and ready

(a process called eviction). Perhaps the node they’re running on is being drained prior

to an upgrade, for example, and the Pods need to be moved to another node.

However, this needn’t result in downtime for your application, provided enough rep‐

licas can be kept running. You can use the PodDisruptionBudget resource to specify,

for a given application, how many Pods you can afford to lose at any given time.

For example, you might specify that no more than 10% of your application’s Pods can

be disrupted at once. Or perhaps you want to specify that Kubernetes can evict any

number of Pods, provided that at least three replicas are always running.

minAvailable

Here’s an example of a PodDisruptionBudget that specifies a minimum number of

Pods to be kept running, using the minAvailable field:

apiVersion: policy/v1beta1

kind: PodDisruptionBudget

metadata:

name: demo-pdb

spec:

minAvailable: 3

selector:

matchLabels:

app: demo

In this example, minAvailable: 3 specifies that at least three Pods matching the label

app: demo should always be running. Kubernetes can evict as many demo Pods as it

wants, so long as there are always at least three left.

maxUnavailable

Conversely, you can use maxUnavailable to limit the total number or percentage of

Pods that Kubernetes is allowed to evict:

apiVersion: policy/v1beta1

kind: PodDisruptionBudget

metadata:

name: demo-pdb

spec:

maxUnavailable: 10%

selector:

76 | Chapter 5: Managing Resources

matchLabels:

app: demo

Here, no more than 10% of demo Pods are allowed to be evicted at any one time. This

only applies to so-called voluntary evictions, though; that is to say, evictions initiated

by Kubernetes. If a node suffers a hardware failure or gets deleted, for example, the

Pods on it will be involuntarily evicted, even if that would violate the disruption

budget.

Since Kubernetes will tend to spread Pods evenly across nodes, all other things being

equal, this is worth bearing in mind when considering how many nodes your cluster

needs. If you have three nodes, the failure of one could result in the loss of a third of

all your Pods, and that may not leave enough to maintain an acceptable level of ser‐

vice (see “High Availability” on page 35).

Best Practice

Set PodDisruptionBudgets for your business-critical applications to

make sure there are always enough replicas to maintain the service,

even when Pods are evicted.

Using Namespaces

Another very useful way of managing resource usage across your cluster is to use

 namespaces. A Kubernetes namespace is a way of partitioning your cluster into sepa‐

rate subdivisions, for whatever purpose you like.

For example, you might have a prod namespace for production applications, and a

test namespace for trying things out. As the term namespace suggests, names in one

namespace are not visible from a different namespace.

This means that you could have a service called demo in the prod namespace, and a

different service called demo in the test namespace, and there won’t be any conflict.

To see the namespaces that exist on your cluster, run the following command:

kubectl get namespaces

NAME STATUS AGE

default Active 1y

kube-public Active 1y

kube-system Active 1y

You can think of namespaces as being a bit like folders on your computer’s hard disk.

While you could keep all your files in the same folder, it would be inconvenient.

Looking for a particular file would be time-consuming, and it wouldn’t be easy to see

which files belong with which others. A namespace groups related resources together,

and makes it easier to work with them. Unlike folders, however, namespaces can’t be

nested.

Using Namespaces | 77

Working with Namespaces

So far when working with Kubernetes we’ve always used the default namespace. If you

don’t specify a namespace when running a kubectl command, such as kubectl run,

your command will operate on the default namespace. If you’re wondering what the

kube-system namespace is, that’s where the Kubernetes internal system components

run, so that they’re segregated from your own applications.

If, instead, you specify a namespace with the --namespace flag (or -n for short), your

command will use that namespace. For example, to get a list of Pods in the prod

namespace, run:

kubectl get pods --namespace prod

What Namespaces Should I Use?

It’s entirely up to you how to divide your cluster into namespaces. One idea that

makes intuitive sense is to have one namespace per application, or per team. For

example, you might create a demo namespace to run the demo application in. You can

create a namespace using a Kubernetes Namespace resource like the following:

apiVersion: v1

kind: Namespace

metadata:

name: demo

To apply this resource manifest, use the kubectl apply -f command (see “Resource

Manifests in YAML Format” on page 59 for more about this.) You’ll find the YAML

manifests for all the examples in this section in the demo application repo, in the

 hel o-namespace directory:

cd demo/hello-namespace

ls k8s

deployment.yaml limitrange.yaml namespace.yaml resourcequota.yaml

service.yaml

You could go further and create namespaces for each environment your app runs in,

such as demo-prod, demo-staging, demo-test, and so on. You could use a namespace

as a kind of temporary virtual cluster, and delete the namespace when you’re finished

with it. But be careful! Deleting a namespace deletes all the resources within it. You

really don’t want to run that command against the wrong namespace. (See “Introduc‐

ing Role-Based Access Control (RBAC)” on page 200 for how to grant or deny user

permissions on individual namespaces.)

In the current version of Kubernetes, there is no way to protect a resource such as a

namespace from being deleted (though a proposal for such a feature is under discus‐

sion). So don’t delete namespaces unless they really are temporary, and you’re sure

they don’t contain any production resources.

78 | Chapter 5: Managing Resources

Best Practice

Create separate namespaces for each of your applications or each

logical component of your infrastructure. Don’t use the default

namespace: it’s too easy to make mistakes.

If you need to block all network traffic in or out of a particular namespace, you can

use Kubernetes Network Policies to enforce this.

Service Addresses

Although namespaces are isolated from one another, they can still communicate with

Services in other namespaces. You may recall from “Service Resources” on page 60

that every Kubernetes Service has an associated DNS name that you can use to talk to

it. Connecting to the hostname demo will connect you to the Service whose name is

demo. How does that work across different namespaces?

Service DNS names always follow this pattern:

SERVICE.NAMESPACE.svc.cluster.local

The .svc.cluster.local part is optional, and so is the namespace. But if you want

to talk to the demo Service in the prod namespace, for example, you can use:

demo.prod

Even if you have a dozen different Services called demo, each in its own namespace,

you can add the namespace to the DNS name for the Service to specify exactly which

one you mean.

Resource Quotas

As well as restricting the CPU and memory usage of individual containers, which you

learned about in “Resource Requests” on page 70, you can (and should) restrict the

resource usage of a given namespace. The way to do this is to create a ResourceQuota

in the namespace. Here’s an example ResourceQuota:

apiVersion: v1

kind: ResourceQuota

metadata:

name: demo-resourcequota

spec:

hard:

pods: "100"

Applying this manifest to a particular namespace (for example, demo) sets a hard limit

of 100 Pods running at once in that namespace. (Note that the metadata.name of the

ResourceQuota can be anything you like. The namespaces it affects depends on

which namespaces you apply the manifest to.)

Using Namespaces | 79

cd demo/hello-namespace

kubectl create namespace demo

namespace "demo" created

kubectl apply --namespace demo -f k8s/resourcequota.yaml

resourcequota "demo-resourcequota" created

Now Kubernetes will block any API operations in the demo namespace that would

exceed the quota. The example ResourceQuota limits the namespace to 100 Pods, so

if there are 100 Pods already running and you try to start a new one, you will see an

error message like this:

Error from server (Forbidden): pods "demo" is forbidden: exceeded quota:

demo-resourcequota, requested: pods=1, used: pods=100, limited: pods=100

Using ResourceQuotas is a good way to stop applications in one namespace from

grabbing too many resources and starving those in other parts of the cluster.

Although you can also limit the total CPU and memory usage of Pods in a name‐

space, we don’t recommend this. If you set these totals quite low, they’ll likely cause

you unexpected and hard-to-spot problems when your workloads are getting close to

the limit. If you set them very high, there’s not much point in setting them at all.

However, a Pod limit is useful to prevent a misconfiguration or typing error from

generating a potentially unlimited number of Pods. It’s easy to forget to clean up some

object from a regular task, and find one day that you’ve got thousands of them clog‐

ging up your cluster.

Best Practice

Use ResourceQuotas in each namespace to enforce a limit on the

number of Pods that can run in the namespace.

To check if a ResourceQuota is active in a particular namespace, use the kubectl get

resourcequotas command:

kubectl get resourcequotas -n demo

NAME AGE

demo-resourcequota 15d

Default Resource Requests and Limits

It’s not always easy to know what your container’s resource requirements are going to

be in advance. You can set default requests and limits for all containers in a name‐

space using a LimitRange resource:

apiVersion: v1

kind: LimitRange

metadata:

80 | Chapter 5: Managing Resources

name: demo-limitrange

spec:

limits:

- default:

cpu: "500m"

memory: "256Mi"

defaultRequest:

cpu: "200m"

memory: "128Mi"

type: Container

As with ResourceQuotas, the metadata.name of the LimitRange

can be whatever you want. It doesn’t correspond to a Kubernetes

namespace, for example. A LimitRange or ResourceQuota takes

effect in a particular namespace only when you apply the manifest

to that namespace.

Any container in the namespace that doesn’t specify a resource limit or request will

inherit the default value from the LimitRange. For example, a container with no cpu

request specified will inherit the value of 200m from the LimitRange. Similarly, a con‐

tainer with no memory limit specified will inherit the value of 256Mi from the Limit‐

Range.

In theory, then, you could set the defaults in a LimitRange and not bother to specify

requests or limits for individual containers. However, this isn’t good practice: it

should be possible to look at a container spec and see what its requests and limits are,

without having to know whether or not a LimitRange is in effect. Use the LimitRange

only as a backstop to prevent problems with containers whose owners forgot to spec‐

ify requests and limits.

Best Practice

Use LimitRanges in each namespace to set default resource

requests and limits for containers, but don’t rely on them; treat

them as a backstop. Always specify explicit requests and limits in

the container spec itself.

Optimizing Cluster Costs

In “Cluster Sizing and Scaling” on page 95, we outlined some considerations for

choosing the initial size of your cluster, and scaling it over time as your workloads

evolve. But assuming that your cluster is correctly sized and has sufficient capacity,

how should you run it in the most cost-effective way?

Optimizing Cluster Costs | 81

Optimizing Deployments

Do you really need quite so many replicas? It may seem an obvious point, but every

Pod in your cluster uses up some resources that are thus unavailable to some other

Pod.

It can be tempting to run a large number of replicas for everything, so that quality of

service will never be reduced if individual Pods fail, or during rolling upgrades. Also,

the more replicas, the more traffic your apps can handle.

But you should use replicas wisely. Your cluster can only run a finite number of Pods.

Give them to applications that really need maximum availability and performance.

If it really doesn’t matter that a given Deployment is down for a few seconds during

an upgrade, it doesn’t need a lot of replicas. A surprisingly large number of applica‐

tions and services can get by perfectly well with one or two replicas.

Review the number of replicas configured for each Deployment, and ask:

• What are the business requirements for performance and availability for this ser‐

vice?

• Can we meet those requirements with fewer replicas?

If an app is struggling to handle demand, or users get too many errors when you

upgrade the Deployment, it needs more replicas. But in many cases you can reduce

the size of a Deployment considerably before you get to the point where the degrada‐

tion starts to be noticeable.

Best Practice

Use the minimum number of Pods for a given Deployment that

will satisfy your performance and availability requirements. Gradu‐

ally reduce the number of replicas to just above the point where

your service level objectives are met.

82 | Chapter 5: Managing Resources

Optimizing Pods

Earlier in this chapter, in “Resource Requests” on page 70, we emphasized the impor‐

tance of setting the correct resource requests and limits for your containers. If the

resource requests are too small, you’ll soon know about it: Pods will start failing. If

they are too large, however, the first time you find about it may be when you get your

monthly cloud bill.

You should regularly review the resource requests and limits for your various work‐

loads, and compare them against what was actually used.

Most managed Kubernetes services offer some kind of dashboard showing the CPU

and memory usage of your containers over time—we’ll see more about this in “Moni‐

toring Cluster Status” on page 211.

You can also build your own dashboards and statistics using Prometheus and Gra‐

fana, and we’ll cover this in detail in Chapter 15.

Setting the optimal resource requests and limits is something of an art, and the

answer will be different for every kind of workload. Some containers may be idle

most of the time, occasionally spiking their resource usage to handle a request; others

may be constantly busy, and gradually use more and more memory until they hit

their limits.

In general, you should set the resource limits for a container to a little above the max‐

imum it uses in normal operation. For example, if a given container’s memory usage

over a few days never exceeds 500 MiB of memory, you might set its memory limit to

600 MiB.

Should containers have limits at all? One school of thought says

that containers should have no limits in production, or that the

limits should be set so high that the containers will never exceed

them. With very large and resource-hungry containers that are

expensive to restart, this may make some sense, but we think it’s

better to set limits anyway. Without them, a container that has a

memory leak, or that uses too much CPU, can gobble up all the

resources available on a node, starving other containers.

To avoid this resource Pac-Man scenario, set a container’s limits to a

little more than 100% of normal usage. This will ensure it’s not kil‐

led as long as it’s working properly, but still minimize the blast

radius if something goes wrong.

Request settings are less critical than limits, but they still should not be set too high

(as the Pod will never be scheduled), or too low (as Pods that exceed their requests are

first in line for eviction).

Optimizing Cluster Costs | 83

Vertical Pod Autoscaler

There is a Kubernetes add-on called the Vertical Pod Autoscaler, which can help you work out the ideal values for resource requests. It will watch a specified Deployment

and automatically adjust the resource requests for its Pods based on what they

actually use. It has a dry-run mode that will just make suggestions, without actually

modifying the running Pods, and this can be helpful.

Optimizing Nodes

Kubernetes can work with a wide range of node sizes, but some will perform better

than others. To get the best cluster capacity for your money, you need to observe how

your nodes perform in practice, under real demand conditions, with your specific

workloads. This will help you determine the most cost-effective instance types.

It’s worth remembering that every node has to have an operating system on it, which

consumes disk, memory, and CPU resources. So do the Kubernetes system compo‐

nents and the container runtime. The smaller the node, the bigger a proportion of its

total resources this overhead represents.

Larger nodes, therefore, can be more cost-effective, because a greater proportion of

their resources are available for your workloads. The trade-off is that losing an indi‐

vidual node has a bigger effect on your cluster’s available capacity.

Small nodes also have a higher percentage of stranded resources: chunks of memory

space and CPU time that are unused, but too small for any existing Pod to claim

them.

A good rule of thumb is that nodes should be big enough to run at least five of your typical Pods, keeping the proportion of stranded resources to around 10% or less. If

the node can run 10 or more Pods, stranded resources will be below 5%.

The default limit in Kubernetes is 110 Pods per node. Although you can increase this

limit by adjusting the --max-pods setting of the kubelet, this may not be possible

with some managed services, and it’s a good idea to stick to the Kubernetes defaults

unless there is a strong reason to change them.

The Pods-per-node limit means that you may not be able to take advantage of your

cloud provider’s largest instance sizes. Instead, consider running a larger number of

smaller nodes to get better utilization. For example, instead of 6 nodes with 8 vCPUs, run 12 nodes with 4 vCPUs.

84 | Chapter 5: Managing Resources

Look at the percentage resource utilization of each node, using

your cloud provider’s dashboard or kubectl top nodes. The big‐

ger the percentage of CPU in use, the better the utilization. If the

larger nodes in your cluster have better utilization, you may be well

advised to remove some of the smaller nodes and replace them

with larger ones.

On the other hand, if larger nodes have low utilization, your cluster may be over

capacity and you can therefore either remove some nodes, or make them smaller,

reducing the total bill.

Best Practice

Larger nodes tend to be more cost-effective, because less of their

resources are consumed by system overhead. Size your nodes by

looking at real-world utilization figures for your cluster, aiming for

between 10 and 100 Pods per node.

Optimizing Storage

One cloud cost that is often overlooked is that of disk storage. Cloud providers offer

varying amounts of disk space with each of their instance sizes, and the price of large-

scale storage varies too.

While it’s possible to achieve quite high CPU and memory utilization using Kuber‐

netes resource requests and limits, the same is not true of storage, and many cluster

nodes are significantly over-provisioned with disk space.

Not only do many nodes have more storage space than they need, the class of storage

can also be a factor. Most cloud providers offer different classes of storage depending

on the number of I/O operations per second (IOPS), or bandwidth, allocated.

For example, databases that use persistent disk volumes often need a very high IOPS

rating, for fast, high-throughput storage access. This is expensive. You can save on

cloud costs by provisioning low-IOPS storage for workloads that don’t need so much

bandwidth. On the other hand, if your application is performing poorly because it’s

spending a lot of time waiting for storage I/O, you may want to provision more IOPS

to handle this.

Your cloud or Kubernetes provider console can usually show you how many IOPS are

actually being used on your nodes, and you can use these figures to help you decide

where to cut costs.

Ideally, you would be able to set resource requests for containers that need high band‐

width or large amounts of storage. However, Kubernetes does not currently support

this, though support for IOPS requests may be added in the future.

Optimizing Cluster Costs | 85

Best Practice

Don’t use instance types with more storage than you need. Provi‐

sion the smallest, lowest-IOPS disk volumes you can, based on the

throughput and space that you actually use.

Cleaning Up Unused Resources

As your Kubernetes clusters grow, you will find many unused, or lost resources hang‐

ing around in dark corners. Over time, if these lost resources are not cleaned up, they

will start to represent a significant fraction of your overall costs.

At the highest level, you may find cloud instances that are not part of any cluster; it’s

easy to forget to terminate a machine when it’s no longer in use.

Other types of cloud resources, such as load balancers, public IPs, and disk volumes,

also cost you money even though they’re not in use. You should regularly review your

usage of each type of resource, to find and remove unused instances.

Similarly, there may be Deployments and Pods in your Kubernetes cluster that are not

actually referenced by any Service, and so cannot receive traffic.

Even container images that are not running take up disk space on your nodes. Fortu‐

nately, Kubernetes will automatically clean up unused images when the node starts

running short of disk space. 2

Using owner metadata

One helpful way to minimize unused resources is to have an organization-wide policy

that each resource must be tagged with information about its owner. You can use

Kubernetes annotations to do this (see “Labels and Annotations” on page 156).

For example, you could annotate each Deployment like this:

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: my-brilliant-app

annotations:

example.com/owner: "Customer Apps Team"

...

The owner metadata should specify the person or team to be contacted about this

resource. This is useful anyway, but it’s especially handy for identifying abandoned or

unused resources. (Note that it’s a good idea to prefix custom annotations with the

2 You can customize this behavior by adjusting the kubelet garbage collection settings.

86 | Chapter 5: Managing Resources

domain name of your company, such as example.com, to prevent collisions with other

annotations that might have the same name.)

You can regularly query the cluster for all resources that do not have an owner anno‐

tation and make a list of them for potential termination. An especially strict policy

might terminate all unowned resources immediately. Don’t be too strict, though,

especially at first: developer goodwill is as important a resource as cluster capacity, if

not more so.

Best Practice

Set owner annotations on all your resources, giving information

about who to contact if there’s a problem with this resource, or if it

seems abandoned and liable for termination.

Finding underutilized resources

Some resources may be receiving very low levels of traffic, or none at all. Perhaps they

became disconnected from a Service front end due to a change in labels, or maybe

they were temporary or experimental.

Every Pod should expose the number of requests it receives as a metric (see Chap‐

ter 16 for more about this). Use these metrics to find Pods that are getting low or zero

traffic, and make a list of resources that can potentially be terminated.

You can also check the CPU and memory utilization figures for each Pod in your web

console and find the least-utilized Pods in your cluster. Pods which don’t do anything

probably aren’t a good use of resources.

If the Pods have owner metadata, contact their owners to find out whether these Pods

are actually needed (for example, they might be for an application still in develop‐

ment).

You could use another custom Kubernetes annotation (perhaps example.com/

lowtraffic) to identify Pods that receive no requests, but are still needed for one rea‐

son or another.

Best Practice

Regularly review your cluster to find underutilized or abandoned

resources and eliminate them. Owner annotations can help.

Cleaning up completed Jobs

Kubernetes Jobs (see “Jobs” on page 166) are Pods that run once to completion and

are not restarted. However, the Job objects still exist in the Kubernetes database, and

Optimizing Cluster Costs | 87

once there are a significant number of completed Jobs, this can affect API perfor‐

mance. A handy tool for cleaning up completed Jobs is kube-job-cleaner.

Checking Spare Capacity

There should always be enough spare capacity in the cluster to handle the failure of a

single worker node. To check this, try draining your biggest node (see “Scaling down”

on page 101). Once all Pods have been evicted from the node, check that all your

applications are still in a working state with the configured number of replicas. If this

is not the case, you need to add more capacity to the cluster.

If there isn’t room to reschedule its workloads when a node fails, your services could

be degraded at best, and unavailable at worst.

Using Reserved Instances

Some cloud providers offer different instance classes depending on the machine’s life

cycle. Reserved instances offer a trade-off between price and flexibility.

For example, AWS reserved instances are about half the price of on-demand instances

(the default type). You can reserve instances for various periods: a year, three years,

and so on. AWS reserved instances have a fixed size, so if it turns out in three months

time that you need a larger instance, your reservation will be mostly wasted.

The Google Cloud equivalent of reserved instances is Committed Use Discounts,

which allow you to prepay for a certain number of vCPUs and an amount of memory.

This is more flexible than AWS reservations, as you can use more resources than you

have reserved; you just pay the normal on-demand price for anything not covered by

your reservation.

Reserved instances and committed use discounts can be a good choice when you

know your requirements for the foreseeable future. However, there’s no refund for

reservations that you don’t end up using, and you have to pay up front for the whole

reservation period. So you should only choose to reserve instances for a period over

which your requirements aren’t likely to change significantly.

If you can plan a year or two ahead, however, using reserved instances could deliver a

considerable saving.

Best Practice

Use reserved instances when your needs aren’t likely to change for

a year or two—but choose your reservations wisely, because they

can’t be altered or refunded once they’re made.

88 | Chapter 5: Managing Resources

Using Preemptible (Spot) Instances

 Spot instances, as AWS calls them, or preemptible VMs in Google’s terminology, pro‐

vide no availability guarantees, and are often limited in life span. Thus, they represent

a trade-off between price and availability.

A spot instance is cheap, but may be paused or resumed at any time, and may be ter‐

minated altogether. Fortunately, Kubernetes is designed to provide high-availability

services despite the loss of individual cluster nodes.

Variable price or variable preemption

Spot instances can therefore be a cost-effective choice for your cluster. With AWS

spot instances, the per-hour pricing varies according to demand. When demand is

high for a given instance type in a particular region and availability zone, the price

will rise.

Google Cloud’s preemptible VMs, on the other hand, are billed at a fixed rate, but the

rate of preemption varies. Google says that on average, about 5–15% of your nodes

will be preempted in a given week. However, preemptible VMs can be up to 80%

cheaper than on-demand, depending on the instance type.

Preemptible nodes can halve your costs

Using preemptible nodes for your Kubernetes cluster, then, can be a very effective

way to reduce costs. While you may need to run a few more nodes to make sure that

your workloads can survive preemption, anecdotal evidence suggests that an overall

50% reduction in the cost per node is achievable.

You may also find that using preemptible nodes is a good way to build a little chaos

engineering into your cluster (see “Chaos Testing” on page 107)—provided that your

application is ready for chaos testing in the first place.

Bear in mind, though, that you should always have enough nonpreemptible nodes to

handle your cluster’s minimum workload. Never bet more than you can afford to

lose. If you have a lot of preemptible nodes, it might be a good idea to use cluster

autoscaling to make sure any preempted nodes are replaced as soon as possible (see

“Autoscaling” on page 102).

In theory, al your preemptible nodes could disappear at the same time. Despite the

cost savings, therefore, it’s a good idea to limit your preemptible nodes to no more

than, say, two-thirds of your cluster.

Optimizing Cluster Costs | 89

Best Practice

Keep costs down by using preemptible or spot instances for some

of your nodes, but no more than you can afford to lose. Always

keep some nonpreemptible nodes in the mix, too.

Using node affinities to control scheduling

You can use Kubernetes node affinities to make sure Pods that can’t tolerate failure are

not scheduled on preemptible nodes (see “Node Affinities” on page 157).

For example, Google Kubernetes Engine preemptible nodes carry the label cloud.goo

gle.com/gke-preemptible. To tell Kubernetes to never schedule a Pod on one of

these nodes, add the following to the Pod or Deployment spec:

affinity:

nodeAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

nodeSelectorTerms:

- matchExpressions:

- key: cloud.google.com/gke-preemptible

operator: DoesNotExist

The requiredDuringScheduling... affinity is mandatory: a Pod with this affinity

will never be scheduled on a node that matches the selector expression (known as a

 hard affinity).

Alternatively, you might want to tell Kubernetes that some of your less critical Pods,

which can tolerate occasional failures, should preferentially be scheduled on preemp‐

tible nodes. In this case, you can use a soft affinity with the opposite sense:

affinity:

nodeAffinity:

preferredDuringSchedulingIgnoredDuringExecution:

- preference:

matchExpressions:

- key: cloud.google.com/gke-preemptible

operator: Exists

weight: 100

This effectively means “Please schedule this Pod on a preemptible node if you can; if

not, it doesn’t matter.”

Best Practice

If you’re running preemptible nodes, use Kubernetes node affinities

to make sure critical workloads are not preempted.

90 | Chapter 5: Managing Resources

Keeping Your Workloads Balanced

We’ve talked about the work that the Kubernetes scheduler does, ensuring that work‐

loads are distributed fairly, across as many nodes as possible, and trying to place rep‐

lica Pods on different nodes for high availability.

In general, the scheduler does a great job, but there are some edge cases you need to

watch out for.

For example, suppose you have two nodes, and two services, A and B, each with two

replicas. In a balanced cluster, there will be one replica of service A on each node, and

one of service B on each node (Figure 5-1). If one node should fail, both A and B will

still be available.

 Figure 5-1. Services A and B are balanced across the available nodes

So far, so good. But suppose Node 2 does fail. The scheduler will notice that both A

and B need an extra replica, and there’s only one node for it to create them on, so it

does. Now Node 1 is running two replicas of service A, and two of service B.

Now suppose we spin up a new node to replace the failed Node 2. Even once it’s avail‐

able, there will be no Pods on it. The scheduler never moves running Pods from one

node to another.

We now have an unbalanced cluster, where all the Pods are on Node 1, and none are on Node 2 (Figure 5-2).

 Figure 5-2. After the failure of Node 2, all replicas have moved to Node 1

But it gets worse. Suppose you deploy a rolling update to service A (let’s call the new

version service A*). The scheduler needs to start two new replicas for service A*, wait

Optimizing Cluster Costs | 91

for them to come up, and then terminate the old ones. Where will it start the new

replicas? On the new Node 2, because it’s idle, while Node 1 is already running four

Pods. So two new service A* replicas are started on Node 2, and the old ones removed

from Node 1 (Figure 5-3).

 Figure 5-3. After the rol out of service A*, the cluster is still unbalanced

Now you’re in a bad situation, because both replicas of service B are on the same node

(Node 1), while both replicas of service A* are also on the same node (Node 2).

Although you have two nodes, you have no high availability. The failure of either

Node 1 or Node 2 will result in a service outage.

The key to this problem is that the scheduler never moves Pods from one node to

another unless they are restarted for some reason. Also, the scheduler’s goal of placing

workloads evenly across nodes is sometimes in conflict with maintaining high availa‐

bility for individual services.

One way around this is to use a tool called Descheduler. You can run this tool every

so often, as a Kubernetes Job, and it will do its best to rebalance the cluster by finding

Pods that need to be moved, and killing them.

Descheduler has various strategies and policies that you can configure. For example,

one policy looks for underutilized nodes, and kills Pods on other nodes to force them

to be rescheduled on the idle nodes.

Another policy looks for duplicate Pods, where two or more replicas of the same Pod

are running on the same node, and evicts them. This fixes the problem that arose in

our example, where workloads were nominally balanced, but in fact neither service

was highly available.

Summary

Kubernetes is pretty good at running workloads for you in a reliable, efficient way

with no real need for manual intervention. Providing you give the scheduler accurate

estimates of your containers’ resource needs, you can largely leave Kubernetes to get

on with it.

92 | Chapter 5: Managing Resources

The time you would have spent fixing operations issues can thus be put to better use,

like developing applications. Thanks, Kubernetes!

Understanding how Kubernetes manages resources is key to building and running

your cluster correctly. The most important points to take away:

• Kubernetes allocates CPU and memory resources to containers on the basis of

 requests and limits.

• A container’s requests are the minimum amounts of resources it needs to run. Its

limits specify the maximum amount it’s allowed to use.

• Minimal container images are faster to build, push, deploy, and start. The smaller

the container, the fewer the potential security vulnerabilities.

• Liveness probes tell Kubernetes whether the container is working properly. If a

container’s liveness probe fails, it will be killed and restarted.

• Readiness probes tell Kubernetes that the container is ready and able to serve

requests. If the readiness probe fails, the container will be removed from any

Services that reference it, disconnecting it from user traffic.

• PodDisruptionBudgets let you limit the number of Pods that can be stopped at

once during evictions, preserving high availability for your application.

• Namespaces are a way of logically partitioning your cluster. You might create a

namespace for each application, or group of related applications.

• To refer to a Service in another namespace, you can use a DNS address like this:

 SERVICE.NAMESPACE.

• ResourceQuotas let you set overall resource limits for a given namespace.

• LimitRanges specify default resource requests and limits for containers in a

namespace.

• Set resource limits so that your applications almost, but don’t quite exceed them

in normal usage.

• Don’t allocate more cloud storage than you need, and don’t provision high-

bandwidth storage unless it’s critical for your application’s performance.

• Set owner annotations on all your resources, and scan the cluster regularly for

unowned resources.

• Find and clean up resources that aren’t being utilized (but check with their own‐

ers).

• Reserved instances can save you money if you can plan your usage long-term.

Summary | 93

• Preemptible instances can save you money right now, but be ready for them to

vanish at short notice. Use node affinities to keep failure-sensitive Pods away

from preemptible nodes.

94 | Chapter 5: Managing Resources

CHAPTER 6

Operating Clusters

If Tetris has taught me anything, it’s that errors pile up and accomplishments disappear.

—Andrew Clay Shafer

Once you have a Kubernetes cluster, how do you know it’s in good shape and running

properly? How do you scale to cope with demand, but keep cloud costs to a mini‐

mum? In this chapter we’ll look at the issues involved in operating Kubernetes clus‐

ters for production workloads, and some of the tools that can help you.

As we’ve seen in Chapter 3, there are many important things to consider about your

Kubernetes cluster: availability, authentication, upgrades, and so on. If you’re using a

good managed Kubernetes service, as we recommend, most of these issues should be

taken care of for you.

However, what you actually do with the cluster is up to you. In this chapter you’ll

learn how to size and scale the cluster, check it for conformance, find security prob‐

lems, and test the resilience of your infrastructure with chaos monkeys.

Cluster Sizing and Scaling

How big does your cluster need to be? With self-hosted Kubernetes clusters, and

almost all managed services, the ongoing cost of your cluster depends directly on the

number and size of its nodes. If the capacity of the cluster is too small, your work‐

loads won’t run properly, or will fail under heavy traffic. If the capacity is too large,

you’re wasting money.

Sizing and scaling your cluster appropriately is very important, so let’s look at some of

the decisions involved.

95

Capacity Planning

One way to make an initial estimate of the capacity you need is to think about how

many traditional servers you would need to run the same applications. For example,

if your current architecture runs on 10 cloud instances, you probably won’t need

more than 10 nodes in your Kubernetes cluster to run the same workload, plus

another for redundancy. In fact, you probably won’t need that many: because it can

balance work evenly across machines, Kubernetes can achieve higher utilization than

with traditional servers. But it may take some time and practical experience to tune

your cluster for optimal capacity.

The smallest cluster

When you’re first setting up a cluster, you will probably be using it to play around

and experiment, and figure out how to run your application. So you probably don’t

need to burn money on a large cluster until you have some idea what capacity you’re

going to need.

The smallest possible Kubernetes cluster is a single node. This will allow you to try

out Kubernetes and run small workloads for development, as we saw in Chapter 2.

However, a single-node cluster has no resilience against the failure of the node hard‐

ware, or of the Kubernetes API server or the kubelet (the agent daemon that is

responsible for running workloads on each node).

If you’re using a managed Kubernetes service like GKE (see “Google Kubernetes

Engine (GKE)” on page 41), then you don’t need to worry about provisioning master

nodes: this is done for you. If, on the other hand, you’re building your own cluster,

you’ll need to decide how many master nodes to use.

The minimum number of master nodes for a resilient Kubernetes cluster is three.

One wouldn’t be resilient, and two could disagree about which was the leader, so

three master nodes are needed.

While you can do useful work on a Kubernetes cluster this small, it’s not recom‐

mended. A better idea is to add some worker nodes, so that your own workloads

aren’t competing for resources with the Kubernetes control plane.

Provided your cluster control plane is highly available, you can get by with a single

worker node, but two is the sensible minimum to protect against node failure, and to

allow Kubernetes to run at least two replicas of every Pod. The more nodes the better,

especially as the Kubernetes scheduler cannot always ensure that workloads are fully

balanced across available nodes (see “Keeping Your Workloads Balanced” on page

91).

96 | Chapter 6: Operating Clusters

Best Practice

Kubernetes clusters need at least three master nodes in order to be

highly available, and you may need more to handle the work of

larger clusters. Two worker nodes is the minimum required to

make your workloads fault-tolerant to the failure of a single node,

and three worker nodes is even better.

The biggest cluster

Is there a limit to how large Kubernetes clusters can be? The short answer is yes, but

you almost certainly won’t have to worry about it; Kubernetes version 1.12 officially

supports clusters of up to 5,000 nodes.

Because clustering requires communication between nodes, the number of possible

communication paths, and the cumulative load on the underlying database, grows

exponentially with the size of the cluster. While Kubernetes may still function with

more than 5,000 nodes, it’s not guaranteed to work, or at least to be responsive

enough to deal with production workloads.

The Kubernetes documentation advises that supported cluster configurations must

have no more than 5,000 nodes, no more than 150,000 total Pods, no more than

300,000 total containers, and no more than 100 Pods per node. It’s worth bearing in

mind that the larger the cluster, the bigger the load on the master nodes; if you’re

responsible for your own master nodes, they’ll need to be pretty powerful machines

to cope with a cluster of thousands of nodes.

Best Practice

For maximum reliability, keep your Kubernetes clusters smaller

than 5,000 nodes and 150,000 Pods (this isn’t an issue for most

users). If you need more resources, run multiple clusters.

Federated clusters

If you have extremely demanding workloads or need to operate at huge scale, these

limits may become a practical problem for you. In this case, you can run multiple

Kubernetes clusters, and if necessary federate them, so that workloads can be replica‐

ted across clusters.

Federation provides the ability to keep two or more clusters synchronized, running

identical workloads. This can be useful if you need Kubernetes clusters in different

cloud providers, for resilience, or in different geographical locations, to reduce

latency for your users. A group of federated clusters can keep running even if an indi‐

vidual cluster fails.

You can read more about cluster federation in the Kubernetes documentation.

Cluster Sizing and Scaling | 97

For most Kubernetes users, federation isn’t something they need to be concerned

with, and, indeed, in practice most users at very large scale are able to handle their

workloads with multiple unfederated clusters of a few hundred to a few thousand

nodes each.

Best Practice

If you need to replicate workloads across multiple clusters, perhaps

for geographical redundancy or latency reasons, use federation.

Most users don’t need to federate their clusters, though.

Do I need multiple clusters?

Unless you’re operating at very large scale, as we mentioned in the previous section,

you probably don’t need more than one or two clusters: maybe one for production,

and one for staging and testing.

For convenience and ease of resource management, you can divide your cluster into

logical partitions using namespaces, which we covered in more detail in “Using

Namespaces” on page 77. With a few exceptions, it’s not usually worth the adminis‐

tration overhead of managing multiple clusters.

There are some specific situations, such as security and regulatory compliance, where

you might want to ensure that services in one cluster are absolutely isolated from

those in another (for example, when dealing with protected health information, or

when data can’t be transmitted from one geographical location to another for legal

reasons). In those cases, you need to create separate clusters. For most Kubernetes

users, this won’t be an issue.

Best Practice

Use a single production and a single staging cluster, unless you

really need complete isolation of one set of workloads or teams

from another. If you just want to partition your cluster for ease of

management, use namespaces instead.

Nodes and Instances

The more capacity a given node has, the more work it can do, where capacity is

expressed in terms of the number of CPU cores (virtual or otherwise), available

memory, and to a lesser extent disk space. But is it better to run 10 very large nodes,

for example, rather than 100 much smaller ones?

98 | Chapter 6: Operating Clusters

Picking the right node size

There’s no universally correct node size for Kubernetes clusters. The answer depends

on your cloud or hardware provider, and on your specific workloads.

The cost per capacity of different instance sizes can have an effect on the way you

decide to size your nodes. For example, some cloud providers may offer a slight dis‐

count on larger instance sizes, so that if your workloads are very compute-intensive,

it may be cheaper to run them on a few very large nodes instead of many smaller

ones.

The number of nodes required in the cluster also affects the choice of node size. To

get the advantages that Kubernetes offers, such as Pod replication and high availabil‐

ity, you need to spread work across several nodes. But if nodes have too much spare

capacity, that’s a waste of money.

If you need, say, at least 10 nodes for high availability, but each node only needs to

run a couple of Pods, the node instances can be very small. On the other hand, if you

only need two nodes, you can make them quite large and potentially save money with

more favorable instance pricing.

Best Practice

Use the most cost-effective node type that your provider offers.

Often, larger nodes work out cheaper, but if you only have a hand‐

ful of nodes, you might want to add some smaller ones, to help

with redundancy.

Cloud instance types

Because the Kubernetes components themselves, such as the kubelet, use a given

amount of resources, and you will need some spare capacity to do useful work, the

smallest instance sizes offered by your cloud provider will probably not be suitable

for Kubernetes.

A master node for small clusters (up to around five nodes) should have at least one

virtual CPU (vCPU) and 3–4 GiB of memory, with larger clusters requiring more

memory and CPUs for each master node. This is equivalent to an n1-standard-1

instance on Google Cloud, an m3.medium on AWS, and a Standard DS1 v2 on Azure.

A single-CPU, 4 GiB instance is also a sensible minimum for a worker node,

although, as we’ve seen, it may sometimes be more cost-effective for you to provision

larger nodes. The default node size in Google Kubernetes Engine, for example, is n1-

standard-1, which has approximately these specs.

For larger clusters, with perhaps a few tens of nodes, it may make sense for you to

provision a mix of two or three different instance sizes. This means that Pods with

Cluster Sizing and Scaling | 99

compute-intensive workloads requiring a lot of memory can be scheduled by Kuber‐

netes on large nodes, leaving smaller nodes free to handle smaller Pods (see “Node

Affinities” on page 157). This gives the Kubernetes scheduler the maximum freedom

of choice when deciding where to run a given Pod.

Heterogeneous nodes

Not all nodes are created equal. You may need some nodes with special properties,

such as a graphics processing unit (GPU). GPUs are high-performance parallel pro‐

cessors that are widely used for compute-intensive problems that have nothing to do

with graphics, such as machine learning or data analysis.

You can use the resource limits functionality in Kubernetes (see “Resource Limits” on

page 71) to specify that a given Pod needs at least one GPU, for example. This will

ensure that those Pods will run only on GPU-enabled nodes, and get priority over

Pods that can run on any node.

Most Kubernetes nodes probably run Linux of one kind or another, which is suitable

for almost all applications. Recall that containers are not virtual machines, so the pro‐

cess inside a container runs directly on the kernel of the operating system on the

underlying node. A Windows binary will not run on a Linux Kubernetes node, for

example, so if you need to run Windows containers, you will have to provision Win‐

dows nodes for them.

Best Practice

Most containers are built for Linux, so you’ll probably want to run

mostly Linux-based nodes. You may need to add one or two special

types of nodes for specific requirements, such as GPUs or Win‐

dows.

Bare-metal servers

One of the most useful properties of Kubernetes is its ability to connect all sorts of

machines of different sizes, architectures, and capabilities, to provide a single, unified,

logical machine on which workloads can run. While Kubernetes is usually associated

with cloud servers, many organizations have large numbers of physical, bare-metal

machines in data centers that can potentially be harnessed into Kubernetes clusters.

We saw in Chapter 1 that cloud technology transforms capex infrastructure (purchas‐

ing machines as a capital expense) to opex infrastructure (leasing compute capacity as

an operating expense), and this makes financial sense, but if your business already

owns a large number of bare-metal servers, you don’t need to write them off just yet:

instead, consider joining them into a Kubernetes cluster (see “Bare-Metal and On-

Prem” on page 49).

100 | Chapter 6: Operating Clusters

Best Practice

If you have hardware servers with spare capacity, or you’re not

ready to migrate completely to the cloud yet, use Kubernetes to run

container workloads on your existing machines.

Scaling the Cluster

Having chosen a sensible starting size for your cluster, and picked the right mix of

instance sizes for your worker nodes, is that the end of the story? Almost certainly

not: over time, you may need to grow or shrink the cluster to match changes in

demand, or in business requirements.

Instance groups

It’s easy to add nodes to a Kubernetes cluster. If you’re running a self-hosted cluster, a

cluster management tool such as kops (see “kops” on page 45) can do it for you. kops

has the concept of an instance group, which is a set of nodes of a given instance type

(for example, m3.medium). Managed services, such as Google Kubernetes Engine, have

the same facility, called node pools.

You can scale instance groups or node pools either by changing the minimum and

maximum size for the group, or by changing the specified instance type, or both.

Scaling down

In principle, there’s no problem with scaling down a Kubernetes cluster either. You

can tell Kubernetes to drain the nodes you want to remove, which will gradually shut

down or move any running Pods on those nodes elsewhere.

Most cluster management tools will do the node draining for you automatically, or

you can use the kubectl drain command to do it yourself. Providing there is enough

spare capacity in the rest of the cluster to reschedule the doomed Pods, once the

nodes have been successfully drained, you can terminate them.

To avoid reducing the number of Pod replicas too much for a given service, you can

use PodDisruptionBudgets to specify a minimum number of available Pods, or the

maximum number of Pods that can be unavailable at any time (see “Pod Disruption

Budgets” on page 76).

If draining a node would cause Kubernetes to exceed these limits, the drain operation

will block until you change the limits or free up some more resources in the cluster.

Draining allows Pods to shut down gracefully, cleaning up after themselves and sav‐

ing any necessary state. For most applications, this is preferable to simply shutting

down the node, which will terminate the Pods immediately.

Cluster Sizing and Scaling | 101

Best Practice

Don’t just shut down nodes when you don’t need them anymore.

Drain them first to ensure their workloads are migrated to other

nodes, and to make sure you have enough spare capacity remaining

in the cluster.

Autoscaling

Most cloud providers support autoscaling: automatically increasing or reducing the

number of instances in a group according to some metric or schedule. For example,

AWS autoscaling groups (ASGs) can maintain a minimum and maximum number of

instances, so that if one instance fails, another will be started to take its place, or if too

many instances are running, some will be shut down.

Alternatively, if your demand fluctuates according to the time of day, you can sched‐

ule the group to grow and shrink at specified times. You can also configure the scal‐

ing group to grow or shrink dynamically on demand: if the average CPU utilization

exceeds 90% over a 15-minute period, for example, instances can be added automati‐

cally until the CPU usage falls below the threshold. When demand falls again, the

group can be scaled down to save money.

Kubernetes has a Cluster Autoscaler add-on that cluster management tools like kops

can take advantage of to enable cloud autoscaling, and managed clusters such as

Azure Kubernetes Service also offer autoscaling.

However, it can take some time and experimentation to get your autoscaling settings

right, and for many users it may not be necessary at all. Most Kubernetes clusters start

small and grow gradually and monotonically by adding a node here and there as

resource usage grows.

For large-scale users, though, or applications where demand is highly variable, cluster

autoscaling is a very useful feature.

Best Practice

Don’t enable cluster autoscaling just because it’s there. You proba‐

bly won’t need it unless your workloads or demand are extremely

variable. Scale your cluster manually instead, at least until you’ve

been running it for a while and have a sense of how your scale

requirements are changing over time.

Conformance Checking

When is Kubernetes not Kubernetes? The flexibility of Kubernetes means there are

lots of different ways to set up Kubernetes clusters, and this presents a potential

102 | Chapter 6: Operating Clusters

problem. If Kubernetes is to be a universal platform, you should be able to take a

workload and run it on any Kubernetes cluster and have it work the way you expect.

That means the same API calls and Kubernetes objects have to be available, they have

to have the same behavior, they have to work as advertised, and so on.

Fortunately, Kubernetes itself includes a test suite which verifies that a given Kuber‐

netes cluster is conformant; that is, it satisfies a core set of requirements for a given

Kubernetes version. These conformance tests are very useful for Kubernetes adminis‐

trators.

If your cluster doesn’t pass them, then there is a problem with your setup that needs

to be addressed. If it does pass, knowing that it’s conformant gives you confidence

that applications designed for Kubernetes will work with your cluster, and that things

you build on your cluster will work elsewhere too.

CNCF Certification

The Cloud Native Computing Foundation (CNCF) is the official owner of the Kuber‐

netes project and trademark (see “Cloud Native” on page 14), and provides various

kinds of certifications for Kubernetes-related products, engineers, and vendors.

Certified Kubernetes

If you use a managed, or partially managed, Kubernetes service, check whether it car‐

ries the Certified Kubernetes mark and logo (see Figure 6-1). This indicates that the

vendor and service meet the Certified Kubernetes standard, as specified by the Cloud

Native Computing Foundation (CNCF).

 Figure 6-1. The Certified Kubernetes mark means that the product or service is approved

 by the CNCF

Conformance Checking | 103

If the product has Kubernetes in the name, it must be certified by the CNCF. This

means customers know exactly what they’re getting, and can be satisfied that it will be

interoperable with other conformant Kubernetes services. Vendors can self-certify

their products by running the Sonobuoy conformance checking tool (see “Conform‐

ance Testing with Sonobuoy” on page 104).

Certified Kubernetes products also have to track the latest version of Kubernetes, pro‐

viding updates at least annually. It’s not just managed services that can carry the Cer‐

tified Kubernetes mark; distributions and installer tools can, too.

Certified Kubernetes Administrator (CKA)

To become a Certified Kubernetes Administrator, you need to demonstrate that you

have the key skills to manage Kubernetes clusters in production, including installa‐

tion and configuration, networking, maintenance, knowledge of the API, security,

and troubleshooting. Anyone can take the CKA exam, which is administered online,

and includes a series of challenging practical tests.

The CKA has a reputation as a tough, comprehensive exam that really tests your skills

and knowledge. You can be confident that any engineer who is CKA-certified really

knows Kubernetes. If you run your business on Kubernetes, consider putting some of

your staff through the CKA program, especially those directly responsible for manag‐

ing clusters.

Kubernetes Certified Service Provider (KCSP)

Vendors themselves can apply for the Kubernetes Certified Service Provider (KCSP)

program. To be eligible, the vendor has to be a CNCF member, provide enterprise

support (for example by supplying field engineers to a customer site), contribute

actively to the Kubernetes community, and employ three or more CKA-certified engi‐

neers.

Best Practice

Look for the Certified Kubernetes mark to make sure that a prod‐

uct meets CNCF standards. Look for vendors to be KCSP-certified,

and if you’re hiring Kubernetes administrators, look for a CKA

qualification.

Conformance Testing with Sonobuoy

If you’re managing your own cluster, or even if you’re using a managed service but

want to double-check that it’s configured properly and up to date, you can run the

Kubernetes conformance tests to prove it. The standard tool for running these tests is

104 | Chapter 6: Operating Clusters

Heptio’s Sonobuoy, and the Sonobuoy Scanner web interface allows you to see the

results in your web browser (see Figure 6-2).

The tool will give you a kubectl apply command to run on your cluster, which will

execute the conformance tests and send them back to Heptio, where they will be dis‐

played in the Scanner web interface.

 Figure 6-2. Conformance test results from Sonobuoy Scanner

It’s highly unlikely that there will be any test failures, especially if you’re using a Certi‐

fied Kubernetes service, but if there are, the log messages will give you some helpful

information about how to fix the problem.

Best Practice

Run Sonobuoy once your cluster is set up for the first time, to ver‐

ify that it’s standards-compliant and that everything works. Run it

again every so often to make sure there are no conformance prob‐

lems.

Validation and Auditing

Cluster conformance is a baseline: any production cluster should certainly be con‐

formant, but there are many common problems with Kubernetes configurations and

workloads that conformance testing won’t pick up. For example:

• Using excessively large container images can waste a lot of time and cluster

resources.

• Deployments that specify only a single Pod replica are not highly available.

• Running processes in containers as root is a potential security risk (see “Con‐

tainer Security” on page 141).

Validation and Auditing | 105

In this section, we’ll look at some tools and techniques that can help you find prob‐

lems with your cluster, and tell you what’s causing them.

K8Guard

The K8Guard tool, developed at Target, can check for common problems with your Kubernetes cluster and either take corrective action, or just send you a notification

about them. You can configure it with your own specific policies for your cluster (for

example, you might specify that K8Guard should warn you if any container image is

larger than 1 GiB, or if an ingress rule allows access from anywhere).

K8Guard also exports metrics, which can be collected by a monitoring system like

Prometheus (more about this in Chapter 16), on things like how many Deployments

have policy violations, and also the performance of the Kubernetes API responses.

This can help you detect and fix problems early.

It’s a good idea to leave K8Guard running on your cluster so that it can warn you

about any violations as soon as they happen.

Copper

Copper is a tool for checking your Kubernetes manifests before they’re deployed, and

flagging common problems or enforcing custom policies. It includes a Domain-

Specific Language (DSL) for expressing validation rules and policies.

For example, here is a rule expressed in the Copper language that blocks any con‐

tainer using the latest tag (see “The latest Tag” on page 138 for why this is a bad

idea):

rule NoLatest ensure {

fetch("$.spec.template.spec.containers..image")

.as(:image)

.pick(:tag)

.contains("latest") == false

}

When you run the copper check command on a Kubernetes manifest that includes a

latest container image spec, you’ll see a failure message:

copper check --rules no_latest.cop --files deployment.yml

Validating part 0

NoLatest - FAIL

It’s a good idea to add some Copper rules like this and run the tool as part of your

version control system (for example, to validate the Kubernetes manifests before

committing, or as part of the automated checks on a pull request).

A related tool, which validates your manifests against the Kubernetes API spec, is

kubeval (see “kubeval” on page 234 for more about this).

106 | Chapter 6: Operating Clusters

kube-bench

kube-bench is a tool for auditing your Kubernetes cluster against a set of benchmarks

produced by the Center for Internet Security (CIS). In effect, it verifies that your clus‐

ter is set up according to security best practices. Although you probably won’t need

to, you can configure the tests that kube-bench runs, and even add your own, speci‐

fied as YAML documents.

Kubernetes Audit Logging

Suppose you find a problem on your cluster, such as a Pod you don’t recognize, and

you want to know where it came from. How do you find out who did what on the

cluster when? The Kubernetes audit log will tell you.

With audit logging enabled, all requests to the cluster API will be recorded, with a

timestamp, saying who made the request (which service account), the details of the

request, such as which resources it queried, and what the response was.

The audit events can be sent to your central logging system, where you can filter and

alert on them as you would for other log data (see Chapter 15). A good managed ser‐

vice such as Google Kubernetes Engine will include audit logging by default, but

otherwise you may need to configure the cluster yourself to enable it.

Chaos Testing

We pointed out in “Trust, but verify” on page 37 that the only real way to verify high

availability is to kill one or more of your cluster nodes and see what happens. The

same applies to the high availability of your Kubernetes Pods and applications. You

could pick a Pod at random, for example, terminate it, and check that Kubernetes

restarts it, and that your error rate is unaffected.

Doing this manually is time-consuming, and without realizing it you may be uncon‐

sciously sparing resources that you know are application-critical. To make it a fair

test, the process must be automated.

This kind of automated, random interference with production services is sometimes

known as Chaos Monkey testing, after the tool of the same name developed by Netflix

to test its infrastructure:

Imagine a monkey entering a data center, these farms of servers that host all the critical

functions of our online activities. The monkey randomly rips cables, destroys devices...

The challenge for IT managers is to design the information system they are responsible

for so that it can work despite these monkeys, which no one ever knows when they

arrive and what they will destroy.

—Antonio Garcia Martinez, Chaos Monkeys

Chaos Testing | 107

Apart from Chaos Monkey itself, which terminates random cloud servers, the Netflix

 Simian Army also includes other chaos engineering tools such as Latency Monkey,

which introduces communication delays to simulate network issues, Security Mon‐

key, which looks for known vulnerabilities, and Chaos Gorilla, which drops a whole

AWS availability zone.

Only Production Is Production

You can apply the Chaos Monkey idea to Kubernetes applications, too. While you can

run chaos engineering tools on a staging cluster to avoid disrupting production, that

can only tell you so much. To learn about your production environment, you need to

test production:

Many systems are too big, complex, and cost-prohibitive to clone. Imagine trying to

spin up a copy of Facebook for testing (with its multiple, globally distributed data cen‐

ters).

The unpredictability of user traffic makes it impossible to mock; even if you could per‐

fectly reproduce yesterday’s traffic, you still can’t predict tomorrow’s. Only production

is production.

—Charity Majors

It’s also important to note that your chaos experiments, to be most useful, need to be

automated and continuous. It’s no good doing it once and deciding that your system

is reliable for evermore:

The whole point of automating your chaos experiments is so that you can run them

again and again to build trust and confidence in your system. Not just surfacing new

weaknesses, but also ensuring that you’ve overcome a weakness in the first place.

—Russ Miles (ChaosIQ)

There are several tools you can use for automatically chaos engineering your cluster.

Here are a few options.

chaoskube

chaoskube randomly kills Pods in your cluster. By default it operates in dry-run

mode, which shows you what it would have done, but doesn’t actually terminate any‐

thing.

You can configure chaoskube to include or exclude Pods based on labels (see “Labels”

on page 153), annotations, and namespaces, and to avoid certain time periods or

dates (for example, don’t kill anything on Christmas Eve). By default, though, it will

potentially kill any Pod in any namespace, including Kubernetes system Pods, and

even chaoskube itself.

108 | Chapter 6: Operating Clusters

Once you’re happy with your chaoskube filter configuration, you can disable dry-run

mode and let it do its work.

chaoskube is simple to install and set up, and it’s an ideal tool for getting started with

chaos engineering.

kube-monkey

kube-monkey runs at a preset time (by default, 8 a.m. on weekdays), and builds a

schedule of Deployments that will be targeted during the rest of the day (by default,

10 a.m. to 4 p.m.). Unlike some other tools, kube-monkey works on an opt-in basis:

only those Pods that specifically enable kube-monkey using annotations will be targe‐

ted.

This means that you can add kube-monkey testing to specific apps or services during

their development, and set different levels of frequency and aggression depending on

the service. For example, the following annotation on a Pod will set a mean time

between failures (MTBF) of two days:

kube-monkey/mtbf: 2

The kill-mode annotation lets you specify how many of a Deployment’s Pods will be

killed, or a maximum percentage. The following annotations will kill up to 50% of the

Pods in the targeted Deployment:

kube-monkey/kill-mode: "random-max-percent"

kube-monkey/kill-value: 50

PowerfulSeal

PowerfulSeal is an open source Kubernetes chaos engineering tool that works in two

modes: interactive and autonomous. Interactive mode lets you explore your cluster

and manually break things to see what happens. It can terminate nodes, namespaces,

Deployments, and individual Pods.

Autonomous mode uses a set of policies specified by you: which resources to operate

on, which to avoid, when to run (you can configure it to only operate during working

hours Monday–Friday, for example), and how aggressive to be (kill a given percent‐

age of all matching Deployments, for example). PowerfulSeal’s policy files are very

flexible and let you set up almost any imaginable chaos engineering scenario.

Best Practice

If your applications require high availability, run a chaos testing

tool such as chaoskube regularly to make sure that unexpected

node or Pod failures don’t cause problems. Make sure you clear this

first with the people responsible for operating the cluster and the

applications under test.

Chaos Testing | 109

Summary

It can be really difficult to know how to size and configure your first Kubernetes clus‐

ters. There are a lot of choices you can make, and you don’t really know what you’ll

need until you’ve actually gained some production experience.

We can’t make those decisions for you, but we hope we’ve at least given you some

helpful things to think about when making them:

• Before provisioning your production Kubernetes cluster, think about how many

nodes you’ll need, and of what size.

• You need at least three master nodes (none, if you’re using a managed service)

and at least two (ideally three) worker nodes. This can make Kubernetes clusters

seem a little expensive at first when you’re only running a few small workloads,

but don’t forget the advantages of built-in resilience and scaling.

• Kubernetes clusters can scale to many thousands of nodes and hundreds of thou‐

sands of containers.

• If you need to scale beyond that, use multiple clusters (sometimes you need to do

this for security or compliance reasons too). You can join clusters together using

federation if you need to replicate workloads across clusters.

• A typical instance size for a Kubernetes node is 1 CPU, 4 GiB RAM. It’s good to

have a mix of a few different node sizes, though.

• Kubernetes isn’t just for the cloud; it runs on bare-metal servers too. If you’ve got

metal sitting around, why not use it?

• You can scale your cluster up and down manually without too much trouble, and

you probably won’t have to do it very often. Autoscaling is nice to have, but not

that important.

• There’s a well-defined standard for Kubernetes vendors and products: the CNCF

 Certified Kubernetes mark. If you don’t see this, ask why not.

• Chaos testing is a process of knocking out Pods at random and seeing if your

application still works. It’s useful, but the cloud has a way of doing its own chaos

testing anyway, without you asking for it.

110 | Chapter 6: Operating Clusters

CHAPTER 7

Kubernetes Power Tools

My mechanic told me, “I couldn’t repair your brakes, so I made your horn louder.”

—Steven Wright

People always ask us, “What about all these Kubernetes tools? Do I need them? If so,

which ones? And what do they all do?”

In this chapter, we’ll explore a small part of the landscape of tools and utilities that

help you work with Kubernetes. We’ll show you some advanced techniques with

kubectl, and a few useful utilities such as jq, kubectx, kubens, kube-ps1, kube-

shell, Click, kubed-sh, Stern, and BusyBox.

Mastering kubectl

We’ve already met kubectl, starting in Chapter 2, and as it’s the primary tool for

interacting with Kubernetes, you may already be comfortable with the basics. Let’s

look at some more advanced features of kubectl now, including some tips and tricks

that may be new to you.

Shell Aliases

One of the first things that most Kubernetes users do to make their life easier is to

create a shell alias for the kubectl command. For example, we have the following

alias set up in our .bash_profile files:

alias k= kubectl

Now instead of having to type out kubectl in full for every command, we can just use

k:

k get pods

111

If there are some kubectl commands that you use a lot, you might like to create

aliases for them too. Here are some possible examples:

alias kg= kubectl get

alias kgdep= kubectl get deployment

alias ksys= kubectl --namespace=kube-system

alias kd= kubectl describe

Google engineer Ahmet Alp Balkan has worked out a logical system of aliases like

these, and created a script to generate them all for you (currently around 800 aliases):

You don’t have to use those, though; we suggest you start with k, and add aliases that

are memorable to you, for the commands you use most frequently.

Using Short Flags

Like most command-line tools, kubectl supports abbreviated forms of many of its

flags and switches. This can save you a lot of typing.

For example, you can abbreviate the --namespace flag to just -n (see “Using Name‐

spaces” on page 77):

kubectl get pods -n kube-system

It’s very common to have kubectl operate on resources matching a set of labels, with

the --selector flag (see “Labels” on page 153). Fortunately, this can be shortened to

-l (labels):

kubectl get pods -l environment=staging

Abbreviating Resource Types

A common use for kubectl is to list resources of various types, such as Pods, Deploy‐

ments, Services, and namespaces. The usual way to do this is to use kubectl get

followed by, for example, deployments.

To speed this up, kubectl supports short forms of these resource types:

kubectl get po

kubectl get deploy

kubectl get svc

kubectl get ns

Other useful abbreviations include no for nodes, cm for configmaps, sa for serviceac

counts, ds for daemonsets, and pv for persistentvolumes.

112 | Chapter 7: Kubernetes Power Tools

Auto-Completing kubectl Commands

If you’re using the bash or zsh shells, you can have them auto-complete kubectl

commands. Run this command to see instructions on how to enable auto-completion

for your shell:

kubectl completion -h

Follow the instructions, and you should be able to press Tab to complete partial

kubectl commands. Try it now:

kubectl cl<TAB>

The command should complete to kubectl cluster-info.

If you type just kubectl and hit Tab twice, you’ll see all the commands available:

kubectl <TAB><TAB>

alpha attach cluster-info cordon describe ...

You can use the same technique to list all the flags that you can use with the current

command:

kubectl get pods --<TAB><TAB>

--all-namespaces --cluster= --label-columns= ...

Usefully, kubectl will also auto-complete the names of Pods, Deployments, namespa‐

ces, and so on:

kubectl -n kube-system describe pod <TAB><TAB>

event-exporter-v0.1.9-85bb4fd64d-2zjng

kube-dns-autoscaler-79b4b844b9-2wglc

fluentd-gcp-scaler-7c5db745fc-h7ntr

...

Getting Help

The best command-line tools include thorough documentation, and kubectl is no

exception. You can get a complete overview of the available commands with kubectl

-h:

kubectl -h

You can go further and get detailed documentation on each command, with all the

available options, and a set of examples, by typing kubectl COMMAND -h:

kubectl get -h

Mastering kubectl | 113

Getting Help on Kubernetes Resources

As well as documenting itself, kubectl can also give you help on Kubernetes objects,

such as Deployments or Pods. The kubectl explain command will show documen‐

tation on the specified type of resource:

kubectl explain pods

You can get further information on a specific field of a resource, with kubectl

explain RESOURCE.FIELD. In fact, you can drill down as far as you like with explain:

kubectl explain deploy.spec.template.spec.containers.livenessProbe.exec

Alternatively, try kubectl explain --recursive, which shows fields within fields

within fields… just be careful you don’t get dizzy!

Showing More Detailed Output

You already know that kubectl get will list resources of various types, such as Pods:

kubectl get pods

NAME READY STATUS RESTARTS AGE

demo-54f4458547-pqdxn 1/1 Running 6 5d

You can see extra information, such as the node each Pod is running on, by using the

-o wide flag:

kubectl get pods -o wide

NAME ... IP NODE

demo-54f4458547-pqdxn ... 10.76.1.88 gke-k8s-cluster-1-n1-standard...

(We’ve omitted the information that you see without -o wide, just for reasons of

space.)

Depending on the resource type, -o wide will show you different information. For

example, with nodes:

kubectl get nodes -o wide

NAME ... EXTERNAL-IP OS-IMAGE KERNEL-VERSION

gke-k8s-...8l6n ... 35.233.136.194 Container... 4.14.22+

gke-k8s-...dwtv ... 35.227.162.224 Container... 4.14.22+

gke-k8s-...67ch ... 35.233.212.49 Container... 4.14.22+

Working with JSON Data and jq

The default output format for kubectl get is plain text, but it can also print informa‐

tion in JSON format:

kubectl get pods -n kube-system -o json

{

"apiVersion": "v1",

"items": [

114 | Chapter 7: Kubernetes Power Tools

 {

"apiVersion": "v1",

"kind": "Pod",

"metadata": {

"creationTimestamp": "2018-05-21T18:24:54Z",

...

Not surprisingly, this produces a lot of output (about 5,000 lines on our cluster). For‐

tunately, because the output is in the widely used JSON format, you can use other

tools to filter it, such as the invaluable jq.

If you don’t have jq already, install it in the usual way for your system (brew install jq for macOS, apt install jq for Debian/Ubuntu, and so on).

Once you’ve got jq installed, you can use it to query and filter kubectl output:

kubectl get pods -n kube-system -o json | jq '.items[].metadata.name'

"event-exporter-v0.1.9-85bb4fd64d-2zjng"

"fluentd-gcp-scaler-7c5db745fc-h7ntr"

"fluentd-gcp-v3.0.0-5m627"

"fluentd-gcp-v3.0.0-h5fjg"

...

jq is a very powerful tool for querying and transforming JSON data.

For example, to list your busiest nodes, by the number of Pods running on each:

kubectl get pods -o json --all-namespaces | jq '.items |

 group_by(.spec.nodeName) | map({"nodeName": .[0].spec.nodeName,

 "count": length}) | sort_by(.count) | reverse'

There’s a handy online playground for jq where you can paste in JSON data and try

out different jq queries to get the exact result you want.

If you don’t have access to jq, kubectl also supports JSONPath queries. JSONPath is

a JSON query language that isn’t quite as powerful as jq, but useful for quick one-

liners:

kubectl get pods -o=jsonpath= {.items[0].metadata.name}

demo-66ddf956b9-pnknx

Watching Objects

When you’re waiting for a bunch of Pods to start up, it can be annoying to have to

keep typing kubectl get pods... every few seconds to see if anything’s happened.

kubectl provides the --watch flag (-w for short) to save you having to do this. For

example:

kubectl get pods --watch

NAME READY STATUS RESTARTS AGE

demo-95444875c-z9xv4 0/1 ContainerCreating 0 1s

Mastering kubectl | 115

... [time passes] ...

demo-95444875c-z9xv4 0/1 Completed 0 2s

demo-95444875c-z9xv4 1/1 Running 0 2s

Every time the status of one of the matching Pods changes, you’ll see an update in

your terminal. (See “Watching Kubernetes Resources with kubespy” on page 121 for a

neat way to watch any kind of resource.)

Describing Objects

For really detailed information about Kubernetes objects, you can use the kubectl

describe command:

kubectl describe pods demo-d94cffc44-gvgzm

The Events section can be particularly useful for troubleshooting containers that

aren’t working properly, as it records each stage of the container’s life cycle, along

with any errors that occurred.

Working with Resources

So far, you’ve used kubectl mostly for querying or listing things, as well as applying

declarative YAML manifests with kubectl apply. However, kubectl also has a com‐

plete set of imperative commands: operations that create or modify resources directly.

Imperative kubectl Commands

We showed one example of this in “Running the Demo App” on page 30, using the

kubectl run command, which implicitly creates a Deployment to run the specified

container.

You can also explicitly create most resources using kubectl create:

kubectl create namespace my-new-namespace

namespace "my-new-namespace" created

Similarly, kubectl delete will delete a resource:

kubectl delete namespace my-new-namespace

namespace "my-new-namespace" deleted

The kubectl edit command gives you the power to view and modify any resource:

kubectl edit deployments my-deployment

This will open your default editor with a YAML manifest file representing the speci‐

fied resource.

This is a good way to get a detailed look at the configuration of any resource, but you

can also make any changes you like in the editor. When you save the file and quit the

116 | Chapter 7: Kubernetes Power Tools

editor, kubectl will update the resource, exactly as though you had run kubectl

apply on the manifest file for the resource.

If you introduced any errors, such as invalid YAML, kubectl will tell you and reopen

the file for you to fix the problem.

When Not to Use Imperative Commands

Throughout this book we’ve emphasized the importance of using declarative infra‐

structure as code. So it shouldn’t come as a surprise that we don’t recommend you use

imperative kubectl commands.

Although they can be very useful for quickly testing things or trying out ideas, the

major problem with imperative commands is that you have no single source of truth.

There’s no way to know who ran what imperative commands on the cluster at what

time, and what the effect was. As soon as you run any imperative command, the state

of the cluster becomes out of sync with the manifest files stored in version control.

The next time someone applies the YAML manifests, whatever changes you made

imperatively will be overwritten and lost. This can lead to surprising results, and

potentially adverse effects on critical services:

Alice is on-call, when suddenly there is a large increase in load on the service she

is managing. Alice uses the kubectl scale command to increase the number of

replicas from 5 to 10. Several days later, Bob edits the YAML manifests in version

control to use a new container image, but he doesn’t notice that the number of

replicas in the file is currently 5, not the 10 that are active in production. Bob

proceeds with the rollout, which cuts the number of replicas by half, causing an

immediate overload or outage.

—Kelsey Hightower et al., Kubernetes Up & Running

Alice forgot to update the files in version control after she made her imperative

change, but that’s easy to do, especially under the stress of an incident (see “On-call

Should Not Be Hell” on page 296). Real life doesn’t always follow best practices.

Similarly, before reapplying the manifest files, Bob should have checked the diff using

kubectl diff (see “Diffing Resources” on page 119) to see what would change. But if

you’re not expecting something to be different, it’s easy to overlook it. And maybe

Bob hasn’t read this book.

The best way to avoid this kind of problem is to always make changes by editing and

applying the resource files under version control.

Working with Resources | 117

Best Practice

Don’t use kubectl imperative commands such as create or edit

on production clusters. Instead, always manage resources with

version-controlled YAML manifests, applied with kubectl apply

(or Helm charts).

Generating Resource Manifests

Even though we don’t recommend using kubectl in imperative mode to make

changes to your cluster, imperative commands can be a great time-saver when creat‐

ing Kubernetes YAML files from scratch.

Rather than typing a lot of boilerplate into an empty file, you can use kubectl to give

you a head start, by generating the YAML manifest for you:

kubectl run demo --image=cloudnatived/demo:hello --dry-run -o yaml

apiVersion: extensions/v1beta1

kind: Deployment

...

The --dry-run flag tells kubectl not to actually create the resource, but merely to

print out what it would have created. The -o yaml flag gives you the resource mani‐

fest in YAML format. You can save this output to a file, edit it if you need to, and

finally apply it to create the resource in the cluster:

kubectl run demo --image=cloudnatived/demo:hello --dry-run -o yaml

>deployment.yaml

Now make some edits, using your favorite editor, save, and apply the result:

kubectl apply -f deployment.yaml

deployment.apps "demo" created

Exporting Resources

As well as helping you create new resource manifests, kubectl can also produce man‐

ifest files for resources that already exist in the cluster. For example, maybe you cre‐

ated a Deployment using imperative commands (kubectl run), edited and adjusted

it to get the settings just right, and now you want to write a declarative YAML mani‐

fest for it that you can add to version control.

To do this, use the --export flag with kubectl get:

kubectl run newdemo --image=cloudnatived/demo:hello --port=8888

--labels app=newdemo

deployment.apps "newdemo" created

kubectl get deployments newdemo -o yaml --export >deployment.yaml

118 | Chapter 7: Kubernetes Power Tools

This output is in the right format for you to save with your other manifests, update,

and apply with kubectl apply -f.

If you’ve been using imperative kubectl commands to manage your cluster up to

now, and you’d like to switch to the declarative style that we recommend in this book,

this is a great way to do it. Export all the resources in your cluster to manifest files

using kubectl with the --export flag, as shown in the example, and you’ll be all set.

Diffing Resources

Before you apply Kubernetes manifests using kubectl apply, it’s very useful to be

able to see exactly what would change on the cluster. The kubectl diff command

will do this for you.

kubectl diff -f deployment.yaml

- replicas: 10

+ replicas: 5

You can use this diff output to check whether the changes you made will actually have

the effect you expected. Also, it will warn you if the state of the live resource is out of

sync with the YAML manifest, perhaps because someone edited it imperatively since

you last applied it.

Best Practice

Use kubectl diff to check what would change before applying

any updates to your production cluster.

Working with Containers

Most of what goes on in a Kubernetes cluster happens inside containers, so when

things go wrong, it can be hard to see what’s happening. Here are a few useful ways to

work with running containers using kubectl.

Viewing a Container’s Logs

When you’re trying to get a container working and it’s not behaving as it should, one

of the most useful sources of information is the container’s logs. In Kubernetes, logs

are considered to be whatever a container writes to the standard output and standard

 error streams; if you were running the program in a terminal, these are what you

would see printed in the terminal.

In production applications, especially distributed ones, you’ll need to be able to

aggregate logs from multiple services, store them in a persistent database, and query

Working with Containers | 119

and graph them. This is a big topic, and one we’ll treat in much more detail in Chap‐

ter 15.

Inspecting the log messages from specific containers is still a very useful trouble‐

shooting technique, though, and you can do this directly with kubectl logs, fol‐

lowed by the name of a Pod:

kubectl logs -n kube-system --tail=20 kube-dns-autoscaler-69c5cbdcdd-94h7f

autoscaler.go:49] Scaling Namespace: kube-system, Target: deployment/kube-dns

autoscaler_server.go:133] ConfigMap not found: configmaps "kube-dns-autoscaler"

k8sclient.go:117] Created ConfigMap kube-dns-autoscaler in namespace kube-system

plugin.go:50] Set control mode to linear

linear_controller.go:59] ConfigMap version change (old: new: 526) - rebuilding

Most long-running containers will generate a lot of log output, so you’ll usually want

to restrict it to just the most recent lines, using the --tail flag, as in this example.

(The container logs will be shown with timestamps, but we’ve trimmed those here to

fit the messages on the page.)

To watch a container as it’s running, and stream its log output to your terminal, use

the --follow flag (-f for short):

kubectl logs --namespace kube-system --tail=10 --follow etcd-docker-for-desktop

etcdserver: starting server... [version: 3.1.12, cluster version: 3.1]

embed: ClientTLS: cert = /var/lib/localkube/certs/etcd/server.crt, key = ...

...

As long as you leave the kubectl logs command running, you’ll continue to see out‐

put from the etcd-docker-for-desktop container.

It can be particularly useful to view the Kubernetes API server’s logs; for example, if

you have RBAC permission errors (see “Introducing Role-Based Access Control

(RBAC)” on page 200), they’ll show up here. If you have access to your master nodes,

you can find the kube-apiserver Pod in the kube-system namespace and use

kubectl logs to see its output.

If you’re using a managed service like GKE, where the master nodes are not visible to

you, check your provider’s documentation to see how to find the control plane logs

(for example, on GKE they’ll be visible in the Stackdriver Logs Viewer).

When there are multiple containers in a Pod, you can specify which

one you want to see the logs for using the --container flag (-c for

short):

kubectl logs -n kube-system metrics-server

-c metrics-server-nanny

...

120 | Chapter 7: Kubernetes Power Tools

For more sophisticated log watching, you may want to use a dedicated tool like Stern

instead (see “Stern” on page 130).

Attaching to a Container

When looking at the logs of a container isn’t enough, you might need to attach your

local terminal to the container instead. This lets you see the container’s output

directly. To do this, use kubectl attach:

kubectl attach demo-54f4458547-fcx2n

Defaulting container name to demo.

Use kubectl describe pod/demo-54f4458547-fcx2n to see all of the containers

in this pod.

If you don't see a command prompt, try pressing enter.

Watching Kubernetes Resources with kubespy

When you deploy changes to your Kubernetes manifests, there’s often an anxious

period of waiting to see what happens next.

Often when you deploy an application, lots of things need to happen behind the

scenes, as Kubernetes creates your resources, spins up Pods, and so on.

Because this happens automagical y, as engineers like to say, it can be difficult to tell

what’s going on. kubectl get and kubectl describe can give you snapshots of indi‐

vidual resources, but what we’d really like is a way to see the state of Kubernetes

resources changing in real time.

Enter kubespy, a neat tool from the Pulumi project.1 kubespy can watch an individual

resource in the cluster and show you what’s happening to it over time.

For example, if you point kubespy at a Service resource, it will show you when the

Service is created, when it’s allocated an IP address, when its endpoints are connected,

and so on.

Forwarding a Container Port

We’ve used kubectl port-forward before, in “Running the Demo App” on page 30,

to forward a Kubernetes Service to a port on your local machine. But you can also use

it to forward a container port, if you want to connect directly to a specific Pod. Just

specify the Pod name and the local and remote ports:

kubectl port-forward demo-54f4458547-vm88z 9999:8888

Forwarding from 127.0.0.1:9999 -> 8888

Forwarding from [::1]:9999 -> 8888

1 Pulumi is a cloud native, infrastructure as code framework.

Working with Containers | 121

Now port 9999 on your local machine will be forwarded to port 8888 on the con‐

tainer, and you can connect to it with a web browser, for example.

Executing Commands on Containers

The isolated nature of containers is great when you want to run reliable, secure work‐

loads. But it can be a little inconvenient when something’s not working right, and you

can’t see why.

When you’re running a program on your local machine and it misbehaves, you have

the power of the command line at your disposal to troubleshoot it: you can look at

the running processes with ps, list and display files with ls and cat, and even edit

them with vi.

Very often, with a malfunctioning container, it would be useful to have a shell run‐

ning in the container so that we can do this kind of interactive debugging.

Using the kubectl exec command, you can run a specified command in any con‐

tainer, including a shell:

kubectl run alpine --image alpine --command -- sleep 999

deployment.apps "alpine" created

kubectl get pods

NAME READY STATUS RESTARTS AGE

alpine-7fd44fc4bf-7gl4n 1/1 Running 0 4s

kubectl exec -it alpine-7fd44fc4bf-7gl4n /bin/sh

/ # ps

PID USER TIME COMMAND

1 root 0:00 sleep 999

7 root 0:00 /bin/sh

11 root 0:00 ps

If the Pod has more than one container in it, kubectl exec will run the command in

the first container by default. Alternatively, you can specify the container with the -c

flag:

kubectl exec -it -c container2 POD_NAME /bin/sh

(If the container doesn’t have a shell, see “Adding BusyBox to Your Containers” on

page 124.)

Running Containers for Troubleshooting

As well as running commands on an existing container, sometimes it’s handy to be

able to run commands like wget or nslookup in the cluster, to see the results that your

application would get. You’ve already learned how to run containers in the cluster

122 | Chapter 7: Kubernetes Power Tools

with kubectl run, but here are a few useful examples of running one-off container

commands for debugging purposes.

First, let’s run an instance of the demo application to test against:

kubectl run demo --image cloudnatived/demo:hello --expose --port 8888

service "demo" created

deployment.apps "demo" created

The demo service should have been allocated an IP address and a DNS name of demo

that is accessible from inside the cluster. Let’s check that, using the nslookup com‐

mand running inside a container:

kubectl run nslookup --image=busybox:1.28 --rm -it --restart=Never \

--command -- nslookup demo

Server: 10.79.240.10

Address 1: 10.79.240.10 kube-dns.kube-system.svc.cluster.local

Name: demo

Address 1: 10.79.242.119 demo.default.svc.cluster.local

Good news: the DNS name works, so we should be able to make an HTTP request to

it using wget and see the result:

kubectl run wget --image=busybox:1.28 --rm -it --restart=Never \

--command -- wget -qO- http://demo:8888

Hello, 世界

You can see that this pattern of kubectl run commands uses a common set of flags:

kubectl run NAME --image=IMAGE --rm -it --restart=Never --command -- ...

What do these do?

--rm

This tells Kubernetes to delete the container image after it’s finished running, so

that it doesn’t clutter up your nodes’ local storage.

-it

This runs the container interactively (i), via a terminal (t), so that you see the

output from the container in your own terminal, and can send keystrokes to it if

you need to.

--restart=Never

This tells Kubernetes to skip its usual helpful behavior of restarting a container

whenever it exits. Since we only want to run the container one time, we can dis‐

able the default restart policy.

Working with Containers | 123

--command --

This specifies a command to run, instead of the container’s default entrypoint.

Everything following the -- will be passed to the container as a command line,

complete with arguments.

Using BusyBox Commands

Although you can run any container available to you, the busybox image is particu‐

larly useful, because it contains a wealth of the most commonly used Unix com‐

mands, such as cat, echo, find, grep, and kill. You can see a complete list of

BusyBox commands at their website.

BusyBox also includes a lightweight bash-like shell, called ash, which is compatible

with standard /bin/sh shell scripts. So to get an interactive shell in your cluster, you

can run:

kubectl run busybox --image=busybox:1.28 --rm -it --restart=Never /bin/sh

Because the pattern for running commands from the BusyBox image is always the

same, you could even make a shell alias for it (see “Shell Aliases” on page 111):

alias bb= kubectl run busybox --image=busybox:1.28 --rm -it --restart=Never

 --command --

bb nslookup demo

...

bb wget -qO- http://demo:8888

...

bb sh

If you don't see a command prompt, try pressing enter.

/ #

Adding BusyBox to Your Containers

If your container already has a shell in it (for example, if it’s built from a Linux base

image, such as alpine), then you can get shell access on the container by running:

kubectl exec -it POD /bin/sh

But what if there’s no /bin/sh in the container? For example, if you’re using a minimal,

scratch image as described in “Understanding Dockerfiles” on page 25.

The simplest way to make your containers easily debuggable, while keeping the

images very small, is to copy the busybox executable into them at build time. It’s only

1 MiB, which is a small price to pay for having a usable shell and a set of Unix utilit‐

ies.

You learned in the earlier discussion of multistage builds that you can copy a file from

a previously built container into a new container using the Dockerfile COPY --from

124 | Chapter 7: Kubernetes Power Tools

command. A lesser-known feature of this command is that you can also copy a file

from any public image, not just one that you built locally.

The following Dockerfile shows how to do this with the demo image:

FROM golang:1.11-alpine AS build

WORKDIR /src/

COPY main.go go.* /src/

RUN CGO_ENABLED=0 go build -o /bin/demo

FROM scratch

COPY --from=build /bin/demo /bin/demo

COPY --from=busybox:1.28 /bin/busybox /bin/busybox

ENTRYPOINT ["/bin/demo"]

Here, the --from=busybox:1.28 references the public BusyBox library image. 2 You

could copy a file from any image you like (such as alpine, for example).

Now you still have a very small container, but you can also get a shell on it, by run‐

ning:

kubectl exec -it POD_NAME /bin/busybox sh

Instead of executing /bin/sh directly, you execute /bin/busybox followed by the

name of the command you want; in this case, sh.

Installing Programs on a Container

If you need some programs that aren’t included in BusyBox, or aren’t available in a

public container image, you can run a Linux image such as alpine or ubuntu instead,

and install whatever you need on it:

kubectl run alpine --image alpine --rm -it --restart=Never /bin/sh

If you don't see a command prompt, try pressing enter.

/ # apk --update add emacs

Live Debugging with kubesquash

We’ve talked somewhat loosely about debugging containers in this chapter, in the

sense of figuring out what’s wrong with them. But what if you want to attach a real

debugger, like gdb (the GNU Project debugger) or dlv (the Go debugger) to one of

your running processes in a container?

A debugger, such as dlv, is a very powerful tool that can attach to a process, show you

which source code lines are being executed, inspect and change the values of local

variables, set breakpoints, and step through code line by line. If something mysterious

2 Versions of the BusyBox image later than 1.28 have a problem doing DNS lookups in Kubernetes.

Working with Containers | 125

is going on that you can’t figure out, it’s likely that eventually you’ll have to resort to a

debugger.

When you’re running a program on your local machine, you have direct access to its

processes, so this is no problem. If it’s in a container, then like most things, it’s a little

bit more complicated than that.

The kubesquash tool is designed to help you attach a debugger to a container. To

install it, follow the instructions on GitHub.

Once kubesquash is installed, all you need to do to use it is to give it the name of a

running container:

/usr/local/bin/kubesquash-osx demo-6d7dff895c-x8pfd

? Going to attach dlv to pod demo-6d7dff895c-x8pfd. continue? Yes

If you don't see a command prompt, try pressing enter.

(dlv)

Behind the scenes, kubesquash creates a Pod in the squash namespace that runs the

debugger binary, and takes care of attaching it to the running process in the Pod you

specified.

For technical reasons, kubesquash relies on the ls command being available in the target container. If you’re using a scratch container, you can bake in the BusyBox exe‐

cutable to make this work, like we did in “Adding BusyBox to Your Containers” on

page 124:

COPY --from=busybox:1.28 /bin/busybox /bin/ls

Instead of copying the executable to /bin/busybox, we copy it to /bin/ls. This

makes kubesquash work perfectly.

We won’t go into the details of using dlv here, but if you’re writing Kubernetes appli‐

cations in Go, it’s an invaluable tool, and kubesquash is a very easy way to use it with

containers.

You can read more about dlv in the official documentation.

Contexts and Namespaces

So far in this book we’ve been working with a single Kubernetes cluster, and all the

kubectl commands you’ve run have naturally applied to that cluster.

So what happens when you have more than one cluster? For example, maybe you

have a Kubernetes cluster on your machine, for local testing, and a production cluster

in the cloud, and perhaps another remote cluster for staging and development. How

does kubectl know which one you mean?

126 | Chapter 7: Kubernetes Power Tools

To solve this problem, kubectl has the concept of contexts. A context is a combina‐

tion of a cluster, a user, and a namespace (see “Using Namespaces” on page 77).

When you run kubectl commands, they’re always executed in the current context.

Let’s look at an example:

kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO NAMESPACE

gke gke_test_us-w gke_test_us myapp

* docker-for-desktop docker-for-d docker-for-d

These are the contexts kubectl currently knows about. Each context has a name, and

refers to a particular cluster, a username that authenticates to the cluster, and a name‐

space within the cluster. The docker-for-desktop context, as you might expect,

refers to my local Kubernetes cluster.

The current context is shown with a * in the first column (in the example, it’s docker-

for-desktop). If I run a kubectl command now, it will operate on the Docker Desk‐

top cluster, in the default namespace (because the NAMESPACE column is blank,

indicating that the context refers to the default namespace):

kubectl cluster-info

Kubernetes master is running at https://192.168.99.100:8443

KubeDNS is running at https://192.168.99.100:8443/api/v1/...

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

You can switch to another context using the kubectl config use-context com‐

mand:

kubectl config use-context gke

Switched to context "gke".

You could think of contexts as being like bookmarks: they let you switch easily to a

particular cluster and a particular namespace. To create a new context, use kubectl

config set-context:

kubectl config set-context myapp --cluster=gke --namespace=myapp

Context "myapp" created.

Now whenever you switch to the myapp context, your current context will be the

myapp namespace on the Docker Desktop cluster.

If you forget what your current context is, kubectl config current-context will

tell you:

kubectl config current-context

myapp

Contexts and Namespaces | 127

kubectx and kubens

If, like us, you type for a living, you probably don’t like typing any more keystrokes

than you have to. For faster switching of kubectl contexts, you can use the kubectx

and kubens tools. Follow the instructions on GitHub to install both kubectx and

kubens.

Now you can use the kubectx command to switch contexts:

kubectx docker-for-desktop

Switched to context "docker-for-desktop".

One nice feature of kubectx is that kubectx - will switch to your previous context, so

you can quickly toggle between two contexts:

kubectx -

Switched to context "gke".

kubectx -

Switched to context "docker-for-desktop".

Just kubectx on its own will list all the contexts you have stored, with the current

context highlighted.

Switching namespaces is something you’ll probably do more often than switching

contexts, so the kubens tool is ideal for this:

kubens

default

kube-public

kube-system

kubens kube-system

Context "docker-for-desktop" modified.

Active namespace is "kube-system".

kubens -

Context "docker-for-desktop" modified.

Active namespace is "default".

The kubectx and kubens tools do one thing well, and they’re very

useful additions to your Kubernetes toolbox.

kube-ps1

If you use the bash or zsh shells, there’s a little utility that will add the current Kuber‐

netes context to your prompt.

With kube-ps1 installed, you can’t forget which context you’re in:

128 | Chapter 7: Kubernetes Power Tools

source "/usr/local/opt/kube-ps1/share/kube-ps1.sh"

PS1="[$(kube_ps1)]$ "

[(⎈ |docker-for-desktop:default)]

kubectx cloudnativedevops

Switched to context "cloudnativedevops".

(⎈ |cloudnativedevops:cloudnativedevopsblog)

Kubernetes Shells and Tools

While using kubectl in an ordinary shell is perfectly sufficient for most things you’ll

want to do with a Kubernetes cluster, there are other options.

kube-shell

If kubectl auto-completion isn’t fancy enough for you, there’s always kube-shell, a

wrapper for kubectl that provides a pop-up menu of possible completions for each

command (see Figure 7-1).

 Figure 7-1. kube-shell is an interactive Kubernetes client

Click

A more sophisticated Kubernetes terminal experience is provided by Click.

Click is like an interactive version of kubectl, which remembers the current object

you’re working with. For example, when you want to find and describe a Pod in

kubectl, you usually have to list all the matching Pods first, then copy and paste the

unique name of the Pod you’re interested in into a new command.

Instead, with Click, you can select any resource from a list by typing its number (for

example, 1 for the first item). That’s now the current resource, and the next Click

command will operate on that resource by default. To make finding the object you

want easier, Click supports searching by regular expressions.

Click is a powerful tool that provides a very pleasant environment for working with

Kubernetes. While it’s described as beta and experimental, it’s already perfectly usable

for everyday cluster administration tasks, and it’s well worth trying out.

Kubernetes Shells and Tools | 129

kubed-sh

While kube-shell and Click provide essentially local shells that know a little about

Kubernetes, kubed-sh (pronounced kube-dash) is a more intriguing idea: a shell that

runs, in some sense, on the cluster itself.

kubed-sh will pull and run the necessary containers to execute JavaScript, Ruby, or

Python programs on your current cluster. You can create, for example, a Ruby script

on your local machine, and use kubed-sh to execute the script as a Kubernetes

Deployment.

Stern

While kubectl logs is a useful command (see “Viewing a Container’s Logs” on page

119), it’s not as convenient as it could be. For example, before you can use it, you first

have to find out the unique name of the Pod and container whose logs you want to

see, and specify these on the command line, which generally means at least one copy

and paste.

Also, if you’re using -f to follow logs from a particular container, whenever the con‐

tainer is restarted, your log stream will stop. You’ll have to find out the new name of

the container and run kubectl logs again to follow it. And you can only follow logs

from one Pod at a time.

A more sophisticated log-streaming tool would allow you to specify a group of Pods

with a regular expression matching their names, or a set of labels, and it would be

able to keep on streaming logs even if individual containers are restarted.

Fortunately, that’s exactly what the Stern tool does. Stern tails the logs from all Pods

matching a regular expression (for example demo.*). If there are multiple containers

within the Pod, Stern will show you log messages from each, prefixed by its name.

The --since flag lets you limit the output to recent messages (within the last 10

minutes, in the example).

Instead of matching specific Pod names with a regular expression, you can use any

Kubernetes label selector expression, just as with kubectl. Combined with the --all-

namespaces flag, this is ideal for watching logs from multiple containers.

Building Your Own Kubernetes Tools

Combined with query tools like jq and the standard set of Unix utilities (cut, grep,

xargs, and friends), kubectl can be used for some fairly sophisticated scripting of

Kubernetes resources. As we’ve seen in this chapter, there are also many third-party

tools available that you can use as part of automated scripts.

130 | Chapter 7: Kubernetes Power Tools

This approach has its limits, however. It’s fine to cook up ingenious one-liners and ad

hoc shell scripts for interactive debugging and exploration, but they can be hard to

understand and maintain.

For real systems programs, automating your production workflows, we strongly rec‐

ommend you use a real systems programming language. Go is the logical choice,

since it was good enough for the Kubernetes authors, and naturally Kubernetes

includes a full-featured client library for use in Go programs.

Because the client-go library gives you complete access to the Kubernetes API, you

can do anything with it that kubectl can do, and more. The following snippet shows

how to list all the Pods in your cluster, for example:

...

podList, err := clientset.CoreV1().Pods("").List(metav1.ListOptions{})

if err != nil {

log.Fatal(err)

}

fmt.Println("There are", len(podList.Items), "pods in the cluster:")

for _, i := range podList.Items {

fmt.Println(i.ObjectMeta.Name)

}

...

You can also create or delete Pods, Deployments, or any other resources. You can

even implement your own custom resource types.

If you need a feature that’s missing from Kubernetes, you can implement it yourself,

using the client library.

Other programming languages, such as Ruby, Python, and PHP, also have Kubernetes

client libraries you can use in the same way.

Summary

There is a bewildering profusion of Kubernetes tools available, and more are released

every week. You could be forgiven for feeling a little weary when reading about yet

another tool you apparently can’t do without.

The fact is, you don’t need most of these tools. Kubernetes itself, via kubectl, can do

most everything you want it to. The rest is just for fun and convenience.

Nobody knows everything, but everybody knows something. In writing this chapter,

we’ve incorporated tips and tricks from lots of experienced Kubernetes engineers,

from books, blog posts, and documentation, and one or two little discoveries of our

own. Everybody we’ve shown it to, no matter how expert, learned at least one useful

thing. That makes us happy.

Summary | 131

It’s worth taking a little time to get familiar with kubectl and explore its possibilities;

it’s the most important Kubernetes tool you have, and you’ll be using it a lot.

Here are a few of the most important things to know:

• kubectl includes complete and exhaustive documentation on itself, available

with kubectl -h, and on every Kubernetes resource, field, or feature, using

kubectl explain.

• When you want to do complicated filtering and transformations on kubectl out‐

put, for example in scripts, select JSON format with -o json. Once you have

JSON data, you can use power tools like jq to query it.

• The --dry-run option to kubectl, combined with -o YAML to get YAML output,

lets you use imperative commands to generate Kubernetes manifests. This is a big

time-saver when creating manifest files for new applications, for example.

• You can turn existing resources into YAML manifests, too, using the --export

flag to kubectl get.

• kubectl diff will tell you what would change if you applied a manifest, without

actually changing it.

• You can see the output and error messages from any container with kubectl

logs, stream them continuously with the --follow flag, or do more sophisticated

multi-Pod log tailing with Stern.

• To troubleshoot problem containers, you can attach to them with kubectl

attach or get a shell on the container with kubectl exec -it ... /bin/sh.

• You can run any public container image with kubectl run to help solve prob‐

lems, including the multitalented BusyBox tool, which contains all your favorite

Unix commands.

• Kubernetes contexts are like bookmarks, marking your place in a particular clus‐

ter and namespace. You can switch conveniently between contexts and namespa‐

ces using the kubectx and kubens tools.

• Click is a powerful Kubernetes shell that gives you all the functionality of

kubectl, but with added state: it remembers the currently selected object from

one command to the next, so you don’t have to specify it every time.

• Kubernetes is designed to be automated and controlled by code. When you need

to go beyond what kubectl provides, the Kubernetes client-go library gives you

complete control over every aspect of your cluster using Go code.

132 | Chapter 7: Kubernetes Power Tools

CHAPTER 8

Running Containers

If you have a tough question that you can’t answer, start by tackling a simpler question

that you can’t answer.

—Max Tegmark

In previous chapters, we’ve focused mostly on the operational aspects of Kubernetes:

where to get your clusters, how to maintain them, and how to manage your cluster

resources. Let’s turn now to the most fundamental Kubernetes object: the container.

We’ll look at how containers work on a technical level, how they relate to Pods, and

how to deploy container images to Kubernetes.

In this chapter, we’ll also cover the important topic of container security, and how to

use the security features in Kubernetes to deploy your applications in a secure way,

according to best practices. Finally, we’ll look at how to mount disk volumes on Pods,

allowing containers to share and persist data.

Containers and Pods

We’ve already introduced Pods in Chapter 2, and talked about how Deployments use

ReplicaSets to maintain a set of replica Pods, but we haven’t really looked at Pods

themselves in much detail. Pods are the unit of scheduling in Kubernetes. A Pod

object represents a container or group of containers, and everything that runs in

Kubernetes does so by means of a Pod:

A Pod represents a collection of application containers and volumes running in

the same execution environment. Pods, not containers, are the smallest deploya‐

ble artifact in a Kubernetes cluster. This means all of the containers in a Pod

always land on the same machine.

—Kelsey Hightower et al., Kubernetes Up & Running

133

So far in this book the terms Pod and container have been used more or less inter‐

changeably: the demo application Pod only has one container in it. In more complex

applications, though, it’s quite likely that a Pod will include two or more containers.

So let’s look at how that works, and see when and why you might want to group con‐

tainers together in Pods.

What Is a Container?

Before asking why you might want to have multiple containers in a Pod, let’s take a

moment to revisit what a container actually is.

You know from “The Coming of Containers” on page 7 that a container is a standar‐

dized package that contains a piece of software together with its dependencies, con‐

figuration, data, and so on: everything it needs to run. How does that actually work,

though?

In Linux and most other operating systems, everything that runs on a machine does

so by means of a process. A process represents the binary code and memory state of a

running application, such as Chrome, iTunes, or Visual Studio Code. All processes

exist in the same global namespace: they can all see and interact with each other, they

all share the same pool of resources, such as CPU, memory, and filesystem. (A Linux

namespace is a bit like a Kubernetes namespace, though not the same thing techni‐

cally.)

From the operating system’s point of view, a container represents an isolated process

(or group of processes) that exists in its own namespace. Processes inside the con‐

tainer can’t see processes outside it, and vice versa. A container can’t access resources

belonging to another container, or processes outside of a container. The container

boundary is like a ring fence that stops processes running wild and using up each

other’s resources.

As far as the process inside the container is concerned, it’s running on its own

machine, with complete access to all its resources, and there are no other processes

running. You can see this if you run a few commands inside a container:

kubectl run busybox --image busybox:1.28 --rm -it --restart=Never /bin/sh

If you don't see a command prompt, try pressing enter.

/ # ps ax

PID USER TIME COMMAND

1 root 0:00 /bin/sh

8 root 0:00 ps ax

/ # hostname

busybox

Normally, the ps ax command will list all processes running on the machine, and

there are usually a lot of them (a few hundred on a typical Linux server). But there are

134 | Chapter 8: Running Containers

only two processes shown here: /bin/sh, and ps ax. The only processes visible inside

the container, therefore, are the ones actually running in the container.

Similarly, the hostname command, which would normally show the name of the host

machine, returns busybox: in fact, this is the name of the container. So it looks to the

busybox container as if it’s running on a machine called busybox, and it has the whole

machine to itself. This is true for each of the containers running on the same

machine.

It’s a fun exercise to create a container yourself, without the benefit

of a container runtime like Docker. Liz Rice’s excellent talk on

“What is a container, really?” shows how to do this from scratch in

a Go program.

What Belongs in a Container?

There’s no technical reason you can’t run as many processes as you want to inside a

container: you could run a complete Linux distribution, with multiple running appli‐

cations, network services, and so on, all inside the same container. This is why you

sometimes hear containers referred to as lightweight virtual machines. But this isn’t

the best way to use containers, because then you don’t get the benefits of resource iso‐

lation.

If processes don’t need to know about each other, then they don’t need to run in the

same container. A good rule of thumb with a container is that it should do one thing.

For example, our demo application container listens on a network port, and sends the

string Hello, 世界 to anyone who connects to it. That’s a simple, self-contained ser‐

vice: it doesn’t rely on any other programs or services, and in turn, nothing relies on

it. It’s a perfect candidate for having its own container.

A container also has an entrypoint: a command that is run when the container starts.

That usually results in the creation of a single process to run the command, though

some applications often start a few subprocesses to act as helpers or workers. To start

multiple separate processes in a container, you’d need to write a wrapper script to act

as the entrypoint, which would in turn start the processes you want.

Each container should run just one main process. If you’re running

a large group of unrelated processes in a container, you’re not tak‐

ing full advantage of the power of containers, and you should think

about splitting your application up into multiple, communicating

containers.

Containers and Pods | 135

What Belongs in a Pod?

Now that you know what a container is, you can see why it’s useful to group them

together in Pods. A Pod represents a group of containers that need to communicate

and share data with each other; they need to be scheduled together, they need to be

started and stopped together, and they need to run on the same physical machine.

A good example of this is an application that stores data in a local cache, such as

Memcached. You’ll need to run two processes: your application, and the memcached

server process that handles storing and retrieving data. Although you could run both

processes inside a single container, that’s unnecessary: they only need to communi‐

cate via a network socket. Better to split them into two separate containers, each of

which only needs to worry about building and running its own process.

In fact, you can use a public Memcached container image, available from Docker

Hub, which is already set up to work as part of a Pod with another container.

So you create a Pod with two containers: Memcached, and your application. The

application can talk to Memcached by making a network connection, and because the

two containers are in the same Pod, that connection will always be local: the two con‐

tainers will always run on the same node.

Similarly, imagine a blog application, which consists of a web server container, such

as Nginx, and a Git synchronizer container, which clones a Git repo containing the

blog data: HTML files, images, and so on. The blog container writes data to disk, and

because containers in a Pod can share a disk volume, the data can also be available to

the Nginx container to serve over HTTP:

In general, the right question to ask yourself when designing Pods is, “Will these

containers work correctly if they land on different machines?” If the answer is

“no”, a Pod is the correct grouping for the containers. If the answer is “yes”, mul‐

tiple Pods is the probably the correct solution.

—Kelsey Hightower et al., Kubernetes Up & Running

The containers in a Pod should all be working together to do one job. If you only

need one container to do that job, fine: use one container. If you need two or three,

that’s OK. If you have more than that, you might want to think about whether the

containers could actually be split into separate Pods.

Container Manifests

We’ve outlined what containers are, what should go in a container, and when contain‐

ers should be grouped together in Pods. So how do we actually run a container in

Kubernetes?

136 | Chapter 8: Running Containers

When you created your first Deployment, in “Deployment Manifests” on page 59, it

contained a template.spec section specifying the container to run (only one con‐

tainer, in that example):

spec:

containers:

- name: demo

 image: cloudnatived/demo:hello

 ports:

 - containerPort: 8888

Here’s an example of what the template.spec section for a Deployment with two

containers would look like:

spec:

containers:

- name: container1

 image: example/container1

 - name: container2

 image: example/container2

The only required fields in each container’s spec are the name and image: a container

has to have a name, so that other resources can refer to it, and you have to tell Kuber‐

netes what image to run in the container.

Image Identifiers

You’ve already used some different container image identifiers so far in this book; for

example, cloudnatived/demo:hello, alpine, and busybox:1.28.

There are actually four different parts to an image identifier: the registry hostname,

the repository namespace, the image repository, and the tag. All but the image name

are optional. An image identifier using all of those parts looks like this:

docker.io/cloudnatived/demo:hello

• The registry hostname in this example is docker.io; in fact, that’s the default for

Docker images, so we don’t need to specify it. If your image is stored in another

registry, though, you’ll need to give its hostname. For example, Google Container

Registry images are prefixed by gcr.io.

• The repository namespace is cloudnatived: that’s us (hello!). If you don’t specify

the repository namespace, then the default namespace (called library) is used.

This is a set of official images, which are approved and maintained by Docker,

Inc. Popular official images include OS base images (alpine, ubuntu, debian, cen

tos), language environments (golang, python, ruby, php, java), and widely used

software (mongo, mysql, nginx, redis).

Container Manifests | 137

• The image repository is demo, which identifies a particular container image

within the registry and namespace. (See also “Container Digests” on page 138.)

• The tag is hello. Tags identify different versions of the same image.

It’s up to you what tags to put on a container: some common choices include:

• A semantic version tag, like v1.3.0. This usually refers to the version of the

application.

• A Git SHA tag, like 5ba6bfd.... This identifies the specific commit in the source

repo that was used to build the container (see “Git SHA Tags” on page 254).

• The environment it represents, such as staging or production.

You can add as many tags as you want to a given image.

The latest Tag

If you don’t specify a tag when pulling an image, the default tag is latest. For exam‐

ple, when you run an alpine image, with no tag specified, you’ll get alpine:latest.

The latest tag is a default tag that’s added to an image when you build or push it

without specifying a tag. It doesn’t necessarily identify the most recent image; just the

most recent image that wasn’t explicitly tagged. This makes latest rather unhelpful

as an identifier.

That’s why it’s important to always use a specific tag when deploying production con‐

tainers to Kubernetes. When you’re just running a quick one-off container, for

troubleshooting or experimentation, like the alpine container, it’s fine to omit the tag

and get the latest image. For real applications, though, you want to make sure that if

you deploy the Pod tomorrow, you’ll get the exact same container image as when you

deployed it today:

You should avoid using the latest tag when deploying containers in production,

because this makes it hard to track which version of the image is running and hard to

roll back.

—The Kubernetes documentation

Container Digests

As we’ve seen, the latest tag doesn’t always mean what you think it will, and even a

semantic version or Git SHA tag doesn’t uniquely and permanently identify a particu‐

lar container image. If the maintainer decides to push a different image with the same

tag, the next time you deploy, you’ll get that updated image. In technical terms, a tag

is nondeterministic.

138 | Chapter 8: Running Containers

Sometimes it’s desirable to have deterministic deployments: in other words, to guar‐

antee that a deployment will always reference the exact container image you specified.

You can do this using the container’s digest: a cryptographic hash of the image’s con‐

tents that immutably identifies that image.

Images can have many tags, but only one digest. This means that if your container

manifest specifies the image digest, you can guarantee deterministic deployments. An

image identifier with a digest looks like this:

cloudnatived/

demo@sha256:aeae1e551a6cbd60bcfd56c3b4ffec732c45b8012b7cb758c6c4a34...

Base Image Tags

When you reference a base image in a Dockerfile, if you don’t specify a tag, you’ll get

latest, just as you do when deploying a container. Because of the tricky semantics of

latest, as we’ve seen, it’s a good idea to use a specific base image tag instead, like

alpine:3.8.

When you make a change to your application and rebuild its container, you don’t

want to also get unexpected changes as a result of a newer public base image. That

may cause problems that are hard to find and debug.

To make your builds as reproducible as possible, use a specific tag or digest.

We’ve said that you should avoid using the latest tag, but it’s fair

to note that there’s some room for disagreement about this. Even

the present authors have different preferences. Always using lat

est base images means that if some change to the base image

breaks your build, you’ll find out right away. On the other hand,

using specific image tags means that you only have to upgrade your

base image when you want to, not when the upstream maintainers

decide to. It’s up to you.

Ports

You’ve already seen the ports field used with our demo application: it specifies the

network port numbers the application will listen on. This is just informational, and

has no significance to Kubernetes, but it’s good practice to include it.

Resource Requests and Limits

We’ve already covered resource requests and limits for containers in detail, in Chap‐

ter 5, so a brief recap here will suffice.

Container Manifests | 139

Each container can supply one or more of the following as part of its spec:

• resources.requests.cpu

• resources.requests.memory

• resources.limits.cpu

• resources.limits.memory

Although requests and limits are specified on individual containers, we usually talk in

terms of the Pod’s resource requests and limits. A Pod’s resource request is the sum of

the resource requests for all containers in that Pod, and so on.

Image Pull Policy

As you know, before a container can be run on a node, the image has to be pul ed, or

downloaded, from the appropriate container registry. The imagePullPolicy field on

a container governs how often Kubernetes will do this. It can take one of three values:

Always, IfNotPresent, or Never:

• Always will pull the image every time the container is started. Assuming that you

specify a tag, which you should (see “The latest Tag” on page 138), then this is

unnecessary, and wastes time and bandwidth.

• IfNotPresent, the default, is correct for most situations. If the image is not

already present on the node, it will be downloaded. After that, unless you change

the image spec, the saved image will be used every time the container starts, and

Kubernetes will not attempt to redownload it.

• Never will never update the image at all. With this policy, Kubernetes will never

fetch the image from a registry: if it’s already present on the node, it will be used,

but if it’s not, the container will fail to start. You’re unlikely to want this.

If you run into strange problems (for example, a Pod not updating when you’ve

pushed a new container image), check your image pull policy.

Environment Variables

Environment variables are a common, if limited, way to pass information to contain‐

ers at runtime. Common, because all Linux executables have access to environment

variables, and even programs that were written long before containers existed can use

their environment for configuration. Limited, because environment variables can

only be string values: no arrays, no keys and values, no structured data in general.

The total size of a process’s environment is also limited to 32 KiB, so you can’t pass

large data files in the environment.

140 | Chapter 8: Running Containers

To set an environment variable, list it in the container’s env field:

containers:

- name: demo

image: cloudnatived/demo:hello

env:

- name: GREETING

value: "Hello from the environment"

If the container image itself specifies environment variables (set in the Dockerfile, for

example), then the Kubernetes env settings will override them. This can be useful for

altering the default configuration of a container.

A more flexible way of passing configuration data to containers is

to use a Kubernetes ConfigMap or Secret object: see Chapter 10 for

more about these.

Container Security

You might have noticed in “What Is a Container?” on page 134 that when we looked

at the process list in the container with the ps ax command, the processes were all

running as the root user. In Linux and other Unix-derived operating systems, root is

the superuser, which has privileges to read any data, modify any file, and perform any

operation on the system.

While on a full Linux system some processes need to run as root (for example init,

which manages all other processes), that’s not usually the case with a container.

Indeed, running processes as the root user when you don’t need to is a bad idea. It

contravenes the principle of least privilege. This says that a program should only be able to access the information and resources that it actually needs to do its job.

Programs have bugs; this is a fact of life apparent to anyone who’s written one. Some

bugs allow malicious users to hijack the program to do things it’s not supposed to,

like read secret data, or execute arbitrary code. To mitigate this, it’s important to run

containers with the minimum possible privileges.

This starts with not allowing them to run as root, but instead assigning them an ordi‐

 nary user: one that has no special privileges, such as reading other users’ files:

Just like you wouldn’t (or shouldn’t) run anything as root on your server, you shouldn’t

run anything as root in a container on your server. Running binaries that were created

elsewhere requires a significant amount of trust, and the same is true for binaries in

containers.

—Marc Campbell

Container Security | 141

It’s also possible for attackers to exploit bugs in the container runtime to “escape”

from the container, and get the same powers and privileges on the host machine that

they did in the container.

Running Containers as a Non-Root User

Here’s an example of a container spec that tells Kubernetes to run the container as a

specific user:

containers:

- name: demo

image: cloudnatived/demo:hello

securityContext:

runAsUser: 1000

The value for runAsUser is a UID (a numerical user identifier). On many Linux sys‐

tems, UID 1000 is assigned to the first non-root user created on the system, so it’s

generally safe to choose values of 1000 or above for container UIDs. It doesn’t matter

whether or not a Unix user with that UID exists in the container, or even if there is an

operating system in the container; this works just as well with scratch containers.

Docker also allows you to specify a user in the Dockerfile to run the container’s pro‐

cess, but you needn’t bother to do this. It’s easier and more flexible to set the runA

sUser field in the Kubernetes spec.

If a runAsUser UID is specified, it will override any user configured in the container

image. If there is no runAsUser, but the container specifies a user, Kubernetes will run

it as that user. If no user is specified either in the manifest or the image, the container

will run as root (which, as we’ve seen, is a bad idea).

For maximum security, you should choose a different UID for each container. That

way, if a container should be compromised somehow, or accidentally overwrite data,

it only has permission to access its own data, and not that of other containers.

On the other hand, if you want two or more containers to be able to access the same

data (via a mounted volume, for example), you should assign them the same UID.

Blocking Root Containers

To help prevent this situation, Kubernetes allows you to block containers from run‐

ning if they would run as the root user.

The runAsNonRoot: true setting will do this:

containers:

- name: demo

image: cloudnatived/demo:hello

securityContext:

runAsNonRoot: true

142 | Chapter 8: Running Containers

When Kubernetes runs this container, it will check to see if the container wants to run

as root. If so, it will refuse to start it. This will protect you against forgetting to set a

non-root user in your containers, or running third-party containers that are config‐

ured to run as root.

If this happens, you’ll see the Pod status shown as CreateContainerConfigError, and

when you kubectl describe the Pod, you’ll see this error:

Error: container has runAsNonRoot and image will run as root

Best Practice

Run containers as non-root users, and block root containers from

running, using the runAsNonRoot: true setting.

Setting a Read-Only Filesystem

Another useful security context setting is readOnlyRootFilesystem, which will pre‐

vent the container from writing to its own filesystem. It’s possible to imagine a con‐

tainer taking advantage of a bug in Docker or Kubernetes, for example, where writing

to its filesystem could affect files on the host node. If its filesystem is read-only, that

can’t happen; the container will get an I/O error:

containers:

- name: demo

image: cloudnatived/demo:hello

securityContext:

readOnlyRootFilesystem: true

Many containers don’t need to write anything to their own filesystem, so this setting

won’t interfere with them. It’s good practice to always set readOnlyRootFilesystem unless the container really does need to write to files.

Disabling Privilege Escalation

Normally, Linux binaries run with the same privileges as the user that executes them.

There is an exception, though: binaries that use the setuid mechanism can tem‐

porarily gain the privileges of the user that owns the binary (usually root).

This is a potential problem in containers, since even if the container is running as a

regular user (UID 1000, for example), if it contains a setuid binary, that binary can

gain root privileges by default.

To prevent this, set the allowPrivilegeEscalation field of the container’s security

policy to false:

Container Security | 143

containers:

- name: demo

image: cloudnatived/demo:hello

securityContext:

allowPrivilegeEscalation: false

To control this setting across the whole cluster, rather than for an individual con‐

tainer, see “Pod Security Policies” on page 145.

Modern Linux programs don’t need setuid; they can use a more flexible and fine-

grained privilege mechanism called capabilities to achieve the same thing.

Capabilities

Traditionally, Unix programs had two levels of privileges: normal and superuser. Nor‐

mal programs have no more privileges than the user who runs them, while superuser

programs can do anything, bypassing all kernel security checks.

The Linux capabilities mechanism improves on this by defining various specific

things that a program can do: load kernel modules, perform direct network I/O oper‐

ations, access system devices, and so on. Any program that needs a specific privilege

can be granted it, but no others.

For example, a web server that listens on port 80 would normally need to run as root

to do this; port numbers below 1024 are considered privileged system ports. Instead,

the program can be granted the NET_BIND_SERVICE capability, which allows it to bind

to any port, but gives it no other special privileges.

The default set of capabilities for Docker containers is fairly generous. This is a prag‐

matic decision based on a trade-off of security against usability: giving containers no

capabilities by default would require operators to set capabilities on many containers

in order for them to run.

On the other hand, the principle of least privilege says that a container should have

no capabilities it doesn’t need. Kubernetes security contexts allow you to drop any

capabilities from the default set, and add ones as they’re needed, like this example

shows:

containers:

- name: demo

image: cloudnatived/demo:hello

securityContext:

capabilities:

 drop: ["CHOWN", "NET_RAW", "SETPCAP"]

 add: ["NET_ADMIN"]

The container will have the CHOWN, NET_RAW, and SETPCAP capabilities removed, and

the NET_ADMIN capability added.

144 | Chapter 8: Running Containers

The Docker documentation lists all the capabilities that are set on containers by default, and that can be added as necessary.

For maximum security, you should drop all capabilities for every container, and only

add specific capabilities if they’re needed:

containers:

- name: demo

image: cloudnatived/demo:hello

securityContext:

capabilities:

 drop: ["all"]

 add: ["NET_BIND_SERVICE"]

The capability mechanism puts a hard limit on what processes inside the container

can do, even if they’re running as root. Once a capability has been dropped at the

container level, it can’t be regained, even by a malicious process with maximum privi‐

leges.

Pod Security Contexts

We’ve covered security context settings at the level of individual containers, but you

can also set some of them at the Pod level:

apiVersion: v1

kind: Pod

...

spec:

securityContext:

 runAsUser: 1000

 runAsNonRoot: false

 allowPrivilegeEscalation: false

These settings will apply to all containers in the Pod, unless the container overrides a

given setting in its own security context.

Best Practice

Set security contexts on all your Pods and containers. Disable privi‐

lege escalation and drop all capabilities. Add only the specific capa‐

bilities that a given container needs.

Pod Security Policies

Rather than have to specify all the security settings for each individual container or

Pod, you can specify them at the cluster level using a PodSecurityPolicy resource. A

PodSecurityPolicy looks like this:

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

Container Security | 145

metadata:

name: example

spec:

privileged: false

 # The rest fills in some required fields.

seLinux:

rule: RunAsAny

supplementalGroups:

rule: RunAsAny

runAsUser:

rule: RunAsAny

fsGroup:

rule: RunAsAny

volumes:

- *

This simple policy blocks any privileged containers (those with the privileged flag

set in their securityContext, which would give them almost all the capabilities of a

process running natively on the node).

It’s a little more complicated to use PodSecurityPolicies, as you have to create the poli‐

cies, grant the relevant service accounts access to the policies via RBAC (see “Intro‐

ducing Role-Based Access Control (RBAC)” on page 200), and enable the

PodSecurityPolicy admission controller in your cluster. For larger infrastructures,

though, or where you don’t have direct control over the security configuration of

individual Pods, PodSecurityPolicies are a good idea.

You can read about how to create and enable PodSecurityPolicies in the Kubernetes

documentation.

Pod Service Accounts

Pods run with the permissions of the default service account for the namespace,

unless you specify otherwise (see “Applications and Deployment” on page 203). If you

need to grant extra permissions for some reason (such as viewing Pods in other

namespaces), create a dedicated service account for the app, bind it to the required

roles, and configure the Pod to use the new service account.

To do that, set the serviceAccountName field in the Pod spec to the name of the ser‐

vice account:

apiVersion: v1

kind: Pod

...

spec:

serviceAccountName: deploy-tool

146 | Chapter 8: Running Containers

Volumes

As you may recall, each container has its own filesystem, which is accessible only to

that container, and is ephemeral: any data that is not part of the container image will

be lost when the container is restarted.

Often, this is fine; the demo application, for example, is a stateless server which there‐

fore needs no persistent storage. Nor does it need to share files with any other con‐

tainer.

More complex applications, though, may need both the ability to share data with

other containers in the same Pod, and to have it persist across restarts. A Kubernetes

Volume object can provide both of these.

There are many different types of Volume that you can attach to a Pod. Whatever the

underlying storage medium, a Volume mounted on a Pod is accessible to all the con‐

tainers in the Pod. Containers that need to communicate by sharing files can do so

using a Volume of one kind or another. We’ll look at some of the more important

types in the following sections.

emptyDir Volumes

The simplest Volume type is emptyDir. This is a piece of ephemeral storage that starts

out empty—hence the name—and stores its data on the node (either in memory, or

on the node’s disk). It persists only as long as the Pod is running on that node.

An emptyDir is useful when you want to provision some extra storage for a container,

but it’s not critical to have the data persist forever or move with the container if it

should be scheduled on another node. Some examples include caching downloaded

files or generated content, or using a scratch workspace for data processing jobs.

Similarly, if you just want to share files between containers in a Pod, but don’t need to

keep the data around for a long time, an emptyDir Volume is ideal.

Here’s an example of a Pod that creates an emptyDir Volume and mounts it on a con‐

tainer:

apiVersion: v1

kind: Pod

...

spec:

volumes:

- name: cache-volume

emptyDir: {}

containers:

- name: demo

image: cloudnatived/demo:hello

volumeMounts:

Volumes | 147

- mountPath: /cache

name: cache-volume

First, in the volumes section of the Pod spec, we create an emptyDir Volume named

cache-volume:

volumes:

- name: cache-volume

 emptyDir: {}

Now the cache-volume Volume is available for any container in the Pod to mount

and use. To do that, we list it in the volumeMounts section of the demo container:

name: demo

image: cloudnatived/demo:hello

volumeMounts:

- mountPath: /cache

 name: cache-volume

The container doesn’t have to do anything special to use the new storage: anything it

writes to the path /cache will be written to the Volume, and will be visible to other

containers that mount the same Volume. All containers mounting the Volume can

read and write to it.

Be careful writing to shared Volumes. Kubernetes doesn’t enforce

any locking on disk writes. If two containers try to write to the

same file at once, data corruption can result. To avoid this, either

implement your own write-lock mechanism, or use a Volume type

that supports locking, such as nfs or glusterfs.

Persistent Volumes

While an ephemeral emptyDir Volume is ideal for cache and temporary file-sharing,

some applications need to store persistent data; for example, any kind of database. In

general, we don’t recommend that you run databases in Kubernetes. You’re almost

always better served by using a cloud service instead: for example, most cloud provid‐

ers have managed solutions for relational databases such as MySQL and PostgreSQL,

as well as key-value (NoSQL) stores.

As we saw in “Kubernetes Doesn’t Do It All” on page 13, Kubernetes is best at manag‐

ing stateless applications, which means no persistent data. Storing persistent data sig‐

nificantly complicates the Kubernetes configuration for your app, uses extra cloud

resources, and it also needs to be backed up.

However, if you need to use persistent volumes with Kubernetes, the PersistentVo‐

lume resource is what you’re looking for. We won’t go into great detail about them

here, because the details tend to be specific to your cloud provider; you can read

more about PersistentVolumes in the Kubernetes documentation.

148 | Chapter 8: Running Containers

The most flexible way to use PersistentVolumes in Kubernetes is to create a Persis‐

tentVolumeClaim object. This represents a request for a particular type and size of

PersistentVolume; for example, a 10 GiB Volume of high-speed, read-write storage.

The Pod can then add this PersistentVolumeClaim as a Volume, where it will be avail‐

able for containers to mount and use:

volumes:

- name: data-volume

persistentVolumeClaim:

claimName: data-pvc

You can create a pool of PersistentVolumes in your cluster to be claimed by Pods in

this way. Alternatively, you can set up dynamic provisioning: when a PersistentVolumeClaim like this is mounted, a suitable chunk of storage will be automatically provi‐

sioned and connected to the Pod.

Restart Policies

We saw in “Running Containers for Troubleshooting” on page 122 that Kubernetes

always restarts a Pod when it exits, unless you tell it otherwise. The default restart

policy is thus Always, but you can change this to OnFailure (restart only if the con‐

tainer exited with a nonzero status), or Never:

apiVersion: v1

kind: Pod

...

spec:

restartPolicy: OnFailure

If you want to run a Pod to completion and then have it exit, rather than being restar‐

ted, you can use a Job resource to do this (see “Jobs” on page 166).

Image Pull Secrets

As you know, Kubernetes will download your specified image from the container reg‐

istry if it isn’t already present on the node. However, what if you’re using a private

registry? How can you give Kubernetes the credentials to authenticate to the registry?

The imagePullSecrets field on a Pod allows you to configure this. First, you need to

store the registry credentials in a Secret object (see “Kubernetes Secrets” on page 187

for more about this). Now you can tell Kubernetes to use this Secret when pulling any

containers in the Pod. For example, if your Secret is named registry-creds:

apiVersion: v1

kind: Pod

...

spec:

Restart Policies | 149

 imagePullSecrets:

 - name: registry-creds

The exact format of the registry credentials data is described in the Kubernetes docu‐

mentation.

You can also attach imagePullSecrets to a service account (see “Pod Service

Accounts” on page 146). Any Pods created using this service account will automati‐

cally have the attached registry credentials available.

Summary

In order to understand Kubernetes, you first need to understand containers. In this

chapter, we’ve outlined the basic idea of what a container is, how they work together

in Pods, and what options are available for you to control how containers run in

Kubernetes.

The bare essentials:

• A Linux container, at the kernel level, is an isolated set of processes, with ring-

fenced resources. From inside a container, it looks as though the container has a

Linux machine to itself.

• Containers are not virtual machines. Each container should run one primary

process.

• A Pod usually contains one container that runs a primary application, plus

optional helper containers that support it.

• Container image specifications can include a registry hostname, a repository

namespace, an image repository, and a tag; for example docker.io/cloudna

tived/demo:hello. Only the image name is required.

• For reproducible deployments, always specify a tag for the container image.

Otherwise, you’ll get whatever happens to be latest.

• Programs in containers should not run as the root user. Instead, assign them an

ordinary user.

• You can set the runAsNonRoot: true field on a container to block any container

that wants to run as root.

• Other useful security settings on containers include readOnlyRootFilesystem:

true and allowPrivilegeEscalation: false.

• Linux capabilities provide a fine-grained privilege control mechanism, but the

default capabilities for containers are too generous. Start by dropping all capabili‐

ties for containers, then grant specific capabilities if a container needs them.

150 | Chapter 8: Running Containers

• Containers in the same Pod can share data by reading and writing a mounted

Volume. The simplest Volume is of type emptyDir, which starts out empty and

preserves its contents only as long as the Pod is running.

• A PersistentVolume, on the other hand, preserves its contents as long as needed.

Pods can dynamically provision new PersistentVolumes using PersistentVolume‐

Claims.

Summary | 151

CHAPTER 9

Managing Pods

There are no big problems, there are just a lot of little problems.

—Henry Ford

In the previous chapter we covered containers in some detail, and explained how

containers are composed to form Pods. There are a few other interesting aspects of

Pods, which we’ll turn to in this chapter, including labels, guiding Pod scheduling

using node affinities, barring Pods from running on certain nodes with taints and tol‐

erations, keeping Pods together or apart using Pod affinities, and orchestrating appli‐

cations using Pod controllers such as DaemonSets and StatefulSets.

We’ll also cover some advanced networking options including Ingress resources,

Istio, and Envoy.

Labels

You know that Pods (and other Kubernetes resources) can have labels attached to

them, and that these play an important role in connecting related resources (for

example, sending requests from a Service to the appropriate backends). Let’s take a

closer look at labels and selectors in this section.

What Are Labels?

Labels are key/value pairs that are attached to objects, such as pods. Labels are

intended to be used to specify identifying attributes of objects that are meaningful and

relevant to users, but do not directly imply semantics to the core system.

—The Kubernetes documentation

153

In other words, labels exist to tag resources with information that’s meaningful to us,

but they don’t mean anything to Kubernetes. For example, it’s common to label Pods

with the application they belong to:

apiVersion: v1

kind: Pod

metadata:

labels:

app: demo

Now, by itself, this label has no effect. It’s still useful as documentation: someone can

look at this Pod and see what application it’s running. But the real power of a label

comes when we use it with a selector.

Selectors

A selector is an expression that matches a label (or set of labels). It’s a way of specify‐

ing a group of resources by their labels. For example, a Service resource has a selector

that identifies the Pods it will send requests to. Remember our demo Service from

“Service Resources” on page 60?

apiVersion: v1

kind: Service

...

spec:

...

selector:

 app: demo

This is a very simple selector that matches any resource that has the app label with a

value of demo. If a resource doesn’t have the app label at all, it won’t match this selec‐

tor. If it has the app label, but its value is not demo, it won’t match the selector either.

Only suitable resources (in this case, Pods) with the label app: demo will match, and

all such resources will be selected by this Service.

Labels aren’t just used for connecting Services and Pods; you can use them directly

when querying the cluster with kubectl get, using the --selector flag:

kubectl get pods --all-namespaces --selector app=demo

NAMESPACE NAME READY STATUS RESTARTS AGE

demo demo-5cb7d6bfdd-9dckm 1/1 Running 0 20s

You may recall from “Using Short Flags” on page 112 that --selector can be abbrevi‐

ated to just -l (for labels).

If you want to see what labels are defined on your Pods, use the --show-labels flag

to kubectl get:

154 | Chapter 9: Managing Pods

kubectl get pods --show-labels

NAME ... LABELS

demo-5cb7d6bfdd-9dckm ... app=demo,environment=development

More Advanced Selectors

Most of the time, a simple selector like app: demo (known as an equality selector) will

be all you need. You can combine different labels to make more specific selectors:

kubectl get pods -l app=demo,environment=production

This will return only Pods that have both app: demo and environment: production

labels. The YAML equivalent of this (in a Service, for example) would be:

selector:

app: demo

 environment: production

Equality selectors like this are the only kind available with a Service, but for interac‐

tive queries with kubectl, or more sophisticated resources such as Deployments,

there are other options.

One is selecting for label inequality:

kubectl get pods -l app!=demo

This will return all Pods that have an app label with a different value to demo, or that

don’t have an app label at all.

You can also ask for label values that are in a set:

kubectl get pods -l environment in (staging, production)

The YAML equivalent would be:

selector:

matchExpressions:

 - {key: environment, operator: In, values: [staging, production]}

You can also ask for label values not in a given set:

kubectl get pods -l environment notin (production)

The YAML equivalent of this would be:

selector:

matchExpressions:

 - {key: environment, operator: NotIn, values: [production]}

You can see another example of using matchExpressions in “Using node affinities to

control scheduling” on page 90.

Labels | 155

Other Uses for Labels

We’ve seen how to link Pods to Services using an app label (actually, you can use any

label, but app is common). But what other uses are there for labels?

In our Helm chart for the demo application (see “What’s Inside a Helm Chart?” on

page 220) we set a environment label, which can be, for example, staging or produc

tion. If you’re running staging and production Pods in the same cluster (see “Do I

need multiple clusters?” on page 98) you might want to use a label like this to distin‐

guish between the two environments. For example, your Service selector for produc‐

tion might be:

selector:

app: demo

environment: production

Without the extra environment selector, the Service would match any and all Pods

with app: demo, including the staging ones, which you probably don’t want.

Depending on your applications, you might want to use labels to slice and dice your

resources in a number of different ways. Here are some examples:

metadata:

labels:

app: demo

tier: frontend

environment: production

environment: test

version: v1.12.0

role: primary

This allows you to query the cluster along these various different dimensions to see

what’s going on.

You could also use labels as a way of doing canary deployments (see “Canary Deploy‐

ments” on page 242). If you want to roll out a new version of the application to just a

small percentage of Pods, you could use labels like track: stable and track: can

ary for two separate Deployments.

If your Service’s selector matches only the app label, it will send traffic to all Pods

matching that selector, including both stable and canary. You can alter the number

of replicas for both Deployments to gradually increase the proportion of canary

Pods. Once all running Pods are on the canary track, you can relabel them as stable

and begin the process again with the next version.

Labels and Annotations

You might be wondering what the difference is between labels and annotations.

They’re both sets of key-value pairs that provide metadata about resources.

156 | Chapter 9: Managing Pods

The difference is that labels identify resources. They’re used to select groups of related

resources, like in a Service’s selector. Annotations, on the other hand, are for non-

identifying information, to be used by tools or services outside Kubernetes. For

example, in “Helm Hooks” on page 243 there’s an example of using annotations to

control Helm workflows.

Because labels are often used in internal queries that are performance-critical to

Kubernetes, there are some fairly tight restrictions on valid labels. For example, label

names are limited to 63 characters, though they may have an optional 253-character

prefix in the form of a DNS subdomain, separated from the label by a slash character.

Labels can only begin with an alphanumeric character (a letter or a digit), and can

only contain alphanumeric characters plus dashes, underscores, and dots. Label val‐

ues are similarly restricted.

In practice, we doubt you’ll run out of characters for your labels, since most labels in

common use are just a single word (for example, app).

Node Affinities

We mentioned node affinities briefly in “Using node affinities to control scheduling”

on page 90, in relation to preemptible nodes. In that section, you learned how to use

node affinities to preferentially schedule Pods on certain nodes (or not). Let’s take a

more detailed look at node affinities now.

In most cases, you don’t need node affinities. Kubernetes is pretty smart about sched‐

uling Pods onto the right nodes. If all your nodes are equally suitable to run a given

Pod, then don’t worry about it.

There are exceptions, however (like preemptible nodes in the previous example). If a

Pod is expensive to restart, you probably want to avoid scheduling it on a preemptible

node wherever possible; preemptible nodes can disappear from the cluster without

warning. You can express this kind of preference using node affinities.

There are two types of affinity: hard and soft. Because software engineers aren’t

always the best at naming things, in Kubernetes these are called:

• requiredDuringSchedulingIgnoredDuringExecution (hard)

• preferredDuringSchedulingIgnoredDuringExecution (soft)

It may help you to remember that required means a hard affinity (the rule must be

satisfied to schedule this Pod) and preferred means a soft affinity (it would be nice if

the rule were satisfied, but it’s not critical).

Node Affinities | 157

The long names of the hard and soft affinity types make the point

that these rules apply during scheduling, but not during execution.

That is, once the Pod has been scheduled to a particular node satis‐

fying the affinity, it will stay there. If things change while the Pod is

running, so that the rule is no longer satisfied, Kubernetes won’t

move the Pod. (This feature may be added in the future.)

Hard Affinities

An affinity is expressed by describing the kind of nodes that you want the Pod to run

on. There might be several rules about how you want Kubernetes to select nodes for

the Pod. Each one is expressed using the nodeSelectorTerms field. Here’s an example:

apiVersion: v1

kind: Pod

...

spec:

affinity:

nodeAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

nodeSelectorTerms:

- matchExpressions:

- key: "failure-domain.beta.kubernetes.io/zone"

operator: In

values: ["us-central1-a"]

Only nodes that are in the us-central1-a zone will match this rule, so the overall

effect is to ensure that this Pod is only scheduled in that zone.

Soft Affinities

Soft affinities are expressed in much the same way, except that each rule is assigned a

numerical weight from 1 to 100 that determines the effect it has on the result. Here’s

an example:

preferredDuringSchedulingIgnoredDuringExecution:

- weight: 10

preference:

matchExpressions:

- key: "failure-domain.beta.kubernetes.io/zone"

operator: In

values: ["us-central1-a"]

- weight: 100

preference:

matchExpressions:

- key: "failure-domain.beta.kubernetes.io/zone"

operator: In

values: ["us-central1-b"]

158 | Chapter 9: Managing Pods

Because this is a preferred... rule, it’s a soft affinity: Kubernetes can schedule the

Pod on any node, but it will give priority to nodes that match these rules.

You can see that the two rules have different weight values. The first rule has weight

10, but the second has weight 100. If there are nodes that match both rules, Kuber‐

netes will give 10 times the priority to nodes that match the second rule (being in

availability zone us-central1-b).

Weights are a useful way of expressing the relative importance of your preferences.

Pod Affinities and Anti-Affinities

We’ve seen how you can use node affinities to nudge the scheduler toward or away

from running a Pod on certain kinds of nodes. But is it possible to influence schedul‐

ing decisions based on what other Pods are already running on a node?

Sometimes there are pairs of Pods that work better when they’re together on the same

node; for example, a web server and a content cache, such as Redis. It would be useful

if you could add information to the Pod spec that tells the scheduler it would prefer to

be colocated with a Pod matching a particular set of labels.

Conversely, sometimes you want Pods to avoid each other. In “Keeping Your Work‐

loads Balanced” on page 91 we saw the kind of problems that can arise if Pod replicas

end up together on the same node, instead of distributed across the cluster. Can you

tell the scheduler to avoid scheduling a Pod where another replica of that Pod is

already running?

That’s exactly what you can do with Pod affinities. Like node affinities, Pod affinities

are expressed as a set of rules: either hard requirements, or soft preferences with a set

of weights.

Keeping Pods Together

Let’s take the first case first: scheduling Pods together. Suppose you have one Pod,

labeled app: server, which is your web server, and another, labeled app: cache,

which is your content cache. They can still work together even if they’re on separate

nodes, but it’s better if they’re on the same node, because they can communicate

without having to go over the network. How do you ask the scheduler to colocate

them?

Here’s an example of the required Pod affinity, expressed as part of the server Pod

spec. The effect would be just the same if you added it to the cache spec, or to both

Pods:

apiVersion: v1

kind: Pod

metadata:

Pod Affinities and Anti-Affinities | 159

 name: server

labels:

app: server

...

spec:

affinity:

podAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 labelSelector:

 - matchExpressions:

 - key: app

 operator: In

 values: ["cache"]

 topologyKey: kubernetes.io/hostname

The overall effect of this affinity is to ensure that the server Pod is scheduled, if pos‐

sible, on a node that is also running a Pod labeled cache. If there is no such node, or if

there is no matching node that has sufficient spare resources to run the Pod, it will

not be able to run.

This probably isn’t the behavior you want in a real-life situation. If the two Pods abso‐

lutely must be colocated, put their containers in the same Pod. If it’s just preferable

for them to be colocated, use a soft Pod affinity (preferredDuringSchedulingIgnor

edDuringExecution).

Keeping Pods Apart

Now let’s take the anti-affinity case: keeping certain Pods apart. Instead of podAffin

ity, we use podAntiAffinity:

apiVersion: v1

kind: Pod

metadata:

name: server

labels:

app: server

...

spec:

affinity:

podAntiAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 labelSelector:

 - matchExpressions:

 - key: app

 operator: In

 values: ["server"]

 topologyKey: kubernetes.io/hostname

160 | Chapter 9: Managing Pods

It’s very similar to the previous example, except that it’s a podAntiAffinity, so it

expresses the opposite sense, and the match expression is different. This time, the

expression is: “The app label must have the value server.”

The effect of this affinity is to ensure that the Pod will not be scheduled on any node

matching this rule. In other words, no Pod labeled app: server can be scheduled on

a node that already has an app: server Pod running. This will enforce an even distri‐

bution of server Pods across the cluster, at the possible expense of the desired num‐

ber of replicas.

Soft Anti-Affinities

However, we usually care more about having enough replicas available than distribut‐

ing them as fairly as possible. A hard rule is not really what we want here. Let’s mod‐

ify it slightly to make it a soft anti-affinity:

affinity:

podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 podAffinityTerm:

 labelSelector:

 - matchExpressions:

 - key: app

 operator: In

 values: ["server"]

 topologyKey: kubernetes.io/hostname

Notice that now the rule is preferred..., not required..., making it a soft anti-

affinity. If the rule can be satisfied, it will be, but if not, Kubernetes will schedule the

Pod anyway.

Because it’s a preference, we specify a weight value, just as we did for soft node affini‐

ties. If there were multiple affinity rules to consider, Kubernetes would prioritize

them according to the weight you assign each rule.

When to Use Pod Affinities

Just as with node affinities, you should treat Pod affinities as a fine-tuning enhance‐

ment for special cases. The scheduler is already good at placing Pods to get the best

performance and availability from the cluster. Pod affinities restrict the scheduler’s

freedom, trading off one application against another. When you use one, it should be

because you’ve observed a problem in production, and a Pod affinity is the only way

to fix it.

Pod Affinities and Anti-Affinities | 161

Taints and Tolerations

In “Node Affinities” on page 157, you learned about a property of Pods that can steer

them toward (or away from) a set of nodes. Conversely, taints allow a node to repel a

set of Pods, based on certain properties of the node.

For example, you could use taints to create dedicated nodes: nodes that are reserved

only for specific kinds of Pods. Kubernetes also creates taints for you if certain prob‐

lems exist on the node, such as low memory, or a lack of network connectivity.

To add a taint to a particular node, use the kubectl taint command:

kubectl taint nodes docker-for-desktop dedicated=true:NoSchedule

This adds a taint called dedicated=true to the docker-for-desktop node, with the

effect NoSchedule: no Pod can now be scheduled there unless it has a matching toler‐

 ation.

To see the taints configured on a particular node, use kubectl describe node....

To remove a taint from a node, repeat the kubectl taint command but with a trail‐

ing minus sign after the name of the taint:

kubectl taint nodes docker-for-desktop dedicated:NoSchedule-

Tolerations are properties of Pods that describe the taints that they’re compatible

with. For example, to make a Pod tolerate the dedicated=true taint, add this to the

Pod’s spec:

apiVersion: v1

kind: Pod

...

spec:

tolerations:

 - key: "dedicated"

 operator: "Equal"

 value: "true"

 effect: "NoSchedule"

This is effectively saying “This Pod is allowed to run on nodes that have the dedica

ted=true taint with the effect NoSchedule.” Because the toleration matches the taint,

the Pod can be scheduled. Any Pod without this toleration will not be allowed to run

on the tainted node.

When a Pod can’t run at all because of tainted nodes, it will stay in Pending status,

and you’ll see a message like this in the Pod description:

Warning FailedScheduling 4s (x10 over 2m) default-scheduler 0/1 nodes are

available: 1 node(s) had taints that the pod didn't tolerate.

162 | Chapter 9: Managing Pods

Other uses for taints and tolerations include marking nodes with specialized hard‐

ware (such as GPUs), and allowing certain Pods to tolerate certain kinds of node

problem.

For example, if a node falls off the network, Kubernetes automatically adds the taint

node.kubernetes.io/unreachable. Normally, this would result in its kubelet evict‐

ing all Pods from the node. However, you might want to keep certain Pods running,

in the hope that the network will come back in a reasonable time. To do this, you

could add a toleration to those Pods that matches the unreachable taint.

You can read more about taints and tolerations in the Kubernetes documentation.

Pod Controllers

We’ve talked a lot about Pods in this chapter, and that makes sense: all Kubernetes

applications run in a Pod. You might wonder, though, why we need other kinds of

objects at all. Isn’t it enough just to create a Pod for an application and run it?

That’s effectively what you get by running a container directly with docker con

tainer run, as we did in “Running a Container Image” on page 22. It works, but it’s

very limited:

• If the container exits for some reason, you have to manually restart it.

• There’s only one replica of your container and no way to load-balance traffic

across multiple replicas if you ran them manually.

• If you want highly available replicas, you have to decide which nodes to run them

on, and take care of keeping the cluster balanced.

• When you update the container, you have to take care of stopping each running

image in turn, pulling the new image and restarting it.

That’s the kind of work that Kubernetes is designed to take off your hands using con‐

 trol ers. In “ReplicaSets” on page 56, we introduced the ReplicaSet controller, which

manages a group of replicas of a particular Pod. It works continuously to make sure

there are always the specified number of replicas, starting new ones if there aren’t

enough, and killing off replicas if there are too many.

You’re also now familiar with Deployments, which as we saw in “Deployments” on

page 53, manage ReplicaSets to control the rollout of application updates. When you

update a Deployment, for example with a new container spec, it creates a new Repli‐

caSet to start up the new Pods, and eventually closes down the ReplicaSet that was

managing the old Pods.

For most simple applications, a Deployment is all you need. But there are a few other

useful kinds of Pod controllers, and we’ll look briefly at a few of them in this section.

Pod Controllers | 163

DaemonSets

Suppose you want to send logs from all your applications to a centralized log server,

like an Elasticsearch-Logstash-Kibana (ELK) stack, or a SaaS monitoring product

such as Datadog (see “Datadog” on page 301). There are a few ways to do that.

You could have each application include code to connect to the logging service,

authenticate, write logs, and so on, but this results in a lot of duplicated code, which is

inefficient.

Alternatively, you could run an extra container in every Pod that acts as a logging

agent (this is called a sidecar pattern). This means each application doesn’t have to

have built-in knowledge of how to talk to the logging service, but it does means you

potentially have several copies of the logging agent running on each node.

Since all it does is manage a connection to the logging service and pass on log mes‐

sages to it, you really only need one copy of the logging agent on each node. This is

such a common requirement that Kubernetes provides a special controller object for

it: the DaemonSet.

The term daemon traditionally refers to long-running background

processes on a server that handle things like logging, so by analogy,

Kubernetes DaemonSets run a daemon container on each node in

the cluster.

The manifest for a DaemonSet, as you might expect, looks very much like that for a

Deployment:

apiVersion: apps/v1

kind: DaemonSet

metadata:

name: fluentd-elasticsearch

...

spec:

...

template:

...

spec:

containers:

- name: fluentd-elasticsearch

...

Use a DaemonSet when you need to run one copy of a Pod on each of the nodes in

your cluster. If you’re running an application where maintaining a given number of

replicas is more important than exactly which node the Pods run on, use a Deploy‐

ment instead.

164 | Chapter 9: Managing Pods

StatefulSets

Like a Deployment or DaemonSet, a StatefulSet is a kind of Pod controller. What a

StatefulSet adds is the ability to start and stop Pods in a specific sequence.

With a Deployment, for example, all your Pods are started and stopped in a random

order. This is fine for stateless services, where every replica is identical and does the

same job.

Sometimes, though, you need to start Pods in a specific numbered sequence, and be

able to identify them by their number. For example, distributed applications such as

Redis, MongoDB, or Cassandra create their own clusters, and need to be able to iden‐

tify the cluster leader by a predictable name.

A StatefulSet is ideal for this. For example, if you create a StatefulSet named redis,

the first Pod started will be named redis-0, and Kubernetes will wait until that Pod is

ready before starting the next one, redis-1.

Depending on the application, you can use this property to cluster the Pods in a relia‐

ble way. For example, each Pod can run a startup script that checks if it is running on

redis-0. If it is, it will be the cluster leader. If not, it will attempt to join the cluster by

contacting redis-0.

Each replica in a StatefulSet must be running and ready before Kubernetes starts the

next one, and similarly when the StatefulSet is terminated, the replicas will be shut

down in reverse order, waiting for each Pod to finish before moving on to the next.

Apart from these special properties, a StatefulSet looks very similar to a normal

Deployment:

apiVersion: apps/v1

kind: StatefulSet

metadata:

name: redis

spec:

selector:

matchLabels:

app: redis

serviceName: "redis"

replicas: 3

template:

...

To be able to address each of the Pods by a predictable DNS name, such as redis-1,

you also need to create a Service with a clusterIP type of None (known as a headless

 service).

With a nonheadless Service, you get a single DNS entry (such as redis) that load-

balances across all the backend Pods. With a headless service, you still get that single

Pod Controllers | 165

service DNS name, but you also get individual DNS entries for each numbered Pod,

like redis-0, redis-1, redis-2, and so on.

Pods that need to join the Redis cluster can contact redis-0 specifically, but applica‐

tions that simply need a load-balanced Redis service can use the redis DNS name to

talk to a randomly selected Redis Pod.

StatefulSets can also manage disk storage for their Pods, using a VolumeClaimTem‐

plate object that automatically creates a PersistentVolumeClaim (see “Persistent Vol‐

umes” on page 148).

Jobs

Another useful type of Pod controller in Kubernetes is the Job. Whereas a Deploy‐

ment runs a specified number of Pods and restarts them continually, a Job only runs a

Pod for a specified number of times. After that, it is considered completed.

For example, a batch processing task or queue worker Pod usually starts up, does its

work, and then exits. This is an ideal candidate to be managed by a Job.

There are two fields that control Job execution: completions and parallelism. The

first, completions, determines the number of times the specified Pod needs to run

successfully before the Job is considered complete. The default value is 1, meaning the

Pod will run once.

The parallelism field specifies how many Pods should run at once. Again, the

default value is 1, meaning that only one Pod will run at a time.

For example, suppose you want to run a queue worker Job whose purpose is to con‐

sume work items from a queue. You could set parallelism to 10, and leave comple

tions at the default value of 1. This will start 10 Pods, each of which will keep

consuming work from the queue until there is no more work to do, and then exit, at

which point the Job will be completed:

apiVersion: batch/v1

kind: Job

metadata:

name: queue-worker

spec:

completions: 1

parallelism: 10

template:

metadata:

name: queue-worker

spec:

containers:

...

166 | Chapter 9: Managing Pods

Alternatively, if you want to run something like a batch processing job, you could

leave both completions and parallelism at 1. This will start one copy of the Pod,

and wait for it to complete successfully. If it crashes, fails, or exits in any non-

successful way, the Job will restart it, just like a Deployment does. Only successful

exits count toward the required number of completions.

How do you start a Job? You could do it manually, by applying a Job manifest using

kubectl or Helm. Alternatively, a Job might be triggered by automation; your contin‐

uous deployment pipeline, for example (see Chapter 14).

Probably the most common way to run a Job, though, is to start it periodically, at a

given time of day or at a given interval. Kubernetes has a special type of Job just for

this: the Cronjob.

Cronjobs

In Unix environments, scheduled jobs are run by the cron daemon (whose name

comes from the Greek word χρόνος, meaning “time”). Accordingly, they’re known as

 cron jobs, and the Kubernetes Cronjob object does exactly the same thing.

A Cronjob looks like this:

apiVersion: batch/v1beta1

kind: CronJob

metadata:

name: demo-cron

spec:

schedule: "*/1 * * * *"

jobTemplate:

spec:

...

The two important fields to look at in the CronJob manifest are spec.schedule and

spec.jobTemplate. The schedule field specifies when the job will run, using the

same format as the Unix cron utility.

The jobTemplate specifies the template for the Job that is to be run, and is exactly the

same as a normal Job manifest (see “Jobs” on page 166).

Horizontal Pod Autoscalers

Remember that a Deployment controller maintains a specified number of Pod repli‐

cas. If one replica fails, another will be started to replace it, and if there are too many

Pods for some reason, the Deployment will stop excess Pods in order to achieve the

target number of replicas.

Pod Controllers | 167

The desired replica count is set in the Deployment manifest, and we’ve seen that you

can adjust this to increase the number of Pods if there is heavy traffic, or reduce it to

scale down the Deployment if there are idle Pods.

But what if Kubernetes could adjust the number of replicas for you automatically,

responding to demand? This is exactly what the Horizontal Pod Autoscaler does.

(Horizontal scaling refers to adjusting the number of replicas of a service, in contrast

to vertical scaling, which makes individual replicas bigger or smaller.)

A Horizontal Pod Autoscaler (HPA) watches a specified Deployment, constantly

monitoring a given metric to see if it needs to scale the number of replicas up or

down.

One of the most common autoscaling metrics is CPU utilization. Remember from

“Resource Requests” on page 70 that Pods can request a certain amount of CPU

resources; for example, 500 millicpus. As the Pod runs, its CPU usage will fluctuate,

meaning that at any given moment the Pod is actually using some percentage of its

original CPU request.

You can autoscale the Deployment based on this value: for example, you could create

an HPA that targets 80% CPU utilization for the Pods. If the mean CPU usage over all

the Pods in the Deployment is only 70% of their requested amount, the HPA will

scale down by decreasing the target number of replicas. If the Pods aren’t working

very hard, we don’t need so many of them.

On the other hand, if the average CPU utilization is 90%, this exceeds the target of

80%, so we need to add more replicas until the average CPU usage comes down. The

HPA will modify the Deployment to increase the target number of replicas.

Each time the HPA determines that it needs to do a scaling operation, it adjusts the

replicas by a different amount, based on the ratio of the actual metric value to the tar‐

get. If the Deployment is very close to the target CPU utilization, the HPA will only

add or remove a small number of replicas; but if it’s way out of scale, the HPA will

adjust it by a larger number.

Here’s an example of an HPA based on CPU utilization:

apiVersion: autoscaling/v2beta1

kind: HorizontalPodAutoscaler

metadata:

name: demo-hpa

namespace: default

spec:

scaleTargetRef:

apiVersion: extensions/v1beta1

kind: Deployment

name: demo

minReplicas: 1

maxReplicas: 10

168 | Chapter 9: Managing Pods

 metrics:

- type: Resource

resource:

name: cpu

targetAverageUtilization: 80

The interesting fields here are:

• spec.scaleTargetRef specifies the Deployment to scale

• spec.minReplicas and spec.maxReplicas specify the limits of scaling

• spec.metrics determines the metrics that will be used for scaling

Although CPU utilization is the most common scaling metric, you can use any met‐

rics available to Kubernetes, including both the built-in system metrics like CPU and

memory usage, and app-specific service metrics, which you define and export from

your application (see Chapter 16). For example, you could scale based on the applica‐

tion error rate.

You can read more about autoscalers and custom metrics in the Kubernetes docu‐

mentation.

PodPresets

PodPresets are an experimental alpha feature in Kubernetes that allow you to inject

information into Pods when they’re created. For example, you could create a PodPre‐

set that mounts a volume on all Pods matching a given set of labels.

A PodPreset is a type of object called an admission control er. Admission controllers

watch for Pods being created and take some action when Pods matching their selector

are about to be created. For example, some admission controllers might block cre‐

ation of the Pod if it violates a policy, while others, like PodPreset, inject extra config‐

uration into the Pod.

Here’s an example PodPreset that adds a cache volume to all Pods matching the

tier: frontend selector:

apiVersion: settings.k8s.io/v1alpha1

kind: PodPreset

metadata:

name: add-cache

spec:

selector:

matchLabels:

role: frontend

volumeMounts:

- mountPath: /cache

name: cache-volume

volumes:

Pod Controllers | 169

 - name: cache-volume

emptyDir: {}

The settings defined by a PodPreset are merged with those of each Pod. If a Pod is

modified by a PodPreset, you’ll see an annotation like this:

podpreset.admission.kubernetes.io/podpreset-add-cache: "<resource version>"

What happens if a Pod’s own settings conflict with those defined in a PodPreset, or if

multiple PodPresets specify conflicting settings? In that case, Kubernetes will refuse

to modify the Pod, and you’ll see an event in the Pod’s description with the message

Conflict on pod preset.

Because of this, PodPresets can’t be used to override a Pod’s own configuration, only

to fill in settings which the Pod itself doesn’t specify. A Pod can opt out of being

modified by PodPresets altogether, by setting the annotation:

podpreset.admission.kubernetes.io/exclude: "true"

Because PodPresets are still experimental, they may not be available on managed

Kubernetes clusters, and you may have to take extra steps to enable them in your self-

hosted clusters, such as supplying command-line arguments to the API server. For

details, see the Kubernetes documentation.

Operators and Custom Resource Definitions (CRDs)

We saw in “StatefulSets” on page 165 that, while the standard Kubernetes objects such

as Deployment and Service are fine for simple, stateless applications, they have their

limitations. Some applications require multiple, collaborating Pods which have to be

initialized in a particular order (for example, replicated databases or clustered serv‐

ices).

For applications which need more complicated management than StatefulSets can

provide, Kubernetes allows you to create your own new types of object. These are

called Custom Resource Definitions (CRDs). For example, the Velero backup tool cre‐

ates custom Kubernetes objects such as Configs and Backups (see “Velero” on page

208).

Kubernetes is designed to be extensible, and you’re free to define and create any type

of object you want to, using the CRD mechanism. Some CRDs just exist to store data,

like the Velero BackupStorageLocation object. But you can go further, and create

objects that act as Pod controllers, just like a Deployment or StatefulSet.

For example, if you wanted to create a controller object that sets up replicated, high-

availability MySQL database clusters in Kubernetes, how would you go about it?

The first step would be to create a CRD for your custom controller object. In order to

make it do anything, you then need to write a program that communicates with the

Kubernetes API. This is easy to do, as we saw in “Building Your Own Kubernetes

170 | Chapter 9: Managing Pods

Tools” on page 130. Such a program is called an operator (perhaps because it auto‐

mates the kinds of actions that a human operator might perform).

You don’t need any custom objects in order to write an operator; DevOps engineer

Michael Treacher has written a nice example operator that watches for namespaces being created, and automatically adds a RoleBinding to any new namespace (see

“Introducing Role-Based Access Control (RBAC)” on page 200 for more about Role‐

Bindings).

In general, though, operators use one or more custom objects created via CRDs,

whose behavior is then implemented by a program talking to the Kubernetes API.

Ingress Resources

You can think of an Ingress as a load balancer that sits in front of a Service (see

Figure 9-1). The Ingress receives requests from clients and sends them on to the Ser‐

vice. The Service then sends them to the right Pods, based on the label selector (see

“Service Resources” on page 60).

 Figure 9-1. The Ingress resource

Here is a very simple example Ingress resource:

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

name: demo-ingress

spec:

backend:

serviceName: demo-service

servicePort: 80

This Ingress forwards traffic to a Service named demo-service on port 80. (In fact,

requests go directly from the Ingress to a suitable Pod, but it’s helpful to think of

them conceptually as going via the Service.)

Ingress Resources | 171

By itself, this example doesn’t seem very useful. Ingresses can do much more, how‐

ever.

Ingress Rules

While Services are useful for routing internal traffic in your cluster (for example,

from one microservice to another), an Ingress is useful for routing external traffic

into your cluster and to the appropriate microservice.

An Ingress can forward traffic to different services, depending on certain rules that

you specify. One common use for this is to route requests to different places, depend‐

ing on the request URL (known as a fanout):

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

name: fanout-ingress

spec:

rules:

- http:

paths:

- path: /hello

backend:

serviceName: hello

servicePort: 80

- path: /goodbye

backend:

serviceName: goodbye

servicePort: 80

There are lots of uses for this. Highly available load balancers can be expensive, so

with a fanout Ingress, you can have one load balancer (and associated Ingress) route

traffic to a large number of services.

You’re not just limited to routing based on URLs; you can also use the HTTP Host

header (equivalent to the practice known as name-based virtual hosting). Requests for

websites with different domains (such as example.com) will be routed to the appro‐

priate backend Service based on the domain.

Terminating TLS with Ingress

In addition, Ingress can handle secure connections using TLS (the protocol formerly

known as SSL). If you have lots of different services and applications on the same

domain, they can all share a TLS certificate, and a single Ingress resource can manage

those connections (known as TLS termination):

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

172 | Chapter 9: Managing Pods

 name: demo-ingress

spec:

tls:

- secretName: demo-tls-secret

backend:

serviceName: demo-service

servicePort: 80

Here we’ve added a new tls section, which instructs the Ingress to use a TLS certifi‐

cate to secure traffic with clients. The certificate itself is stored as a Kubernetes Secret

resource (see “Kubernetes Secrets” on page 187).

Using existing TLS certificates

If you have an existing TLS certificate, or you’re going to purchase one from a certifi‐

cate authority, you can use that with your Ingress. Create a Secret that looks like this:

apiVersion: v1

kind: Secret

type: kubernetes.io/tls

metadata:

name: demo-tls-secret

data:

tls.crt: LS0tLS1CRUdJTiBDRV...LS0tCg==

tls.key: LS0tLS1CRUdJTiBSU0...LS0tCg==

Put the contents of the certificate in the tls.crt field, and the key in tls.key. As

usual with Kubernetes Secrets, you should base64-encode the certificate and key data

before adding them to the manifest (see “base64” on page 189).

Automating LetsEncrypt certificates with Cert-Manager

If you want to automatically request and renew TLS certificates using the popular

LetsEncrypt authority (or another ACME certificate provider), you can use cert-

manager.

If you run cert-manager in your cluster, it will automatically detect TLS Ingresses

that have no certificate, and request one from the specified provider (for example,

LetsEncrypt). cert-manager is a more modern and capable successor to the popular

kube-lego tool.

Exactly how TLS connections are handled depends on something called your Ingress

 control er.

Ingress Controllers

An Ingress controller is responsible for managing Ingress resources in a cluster.

Depending on where you are running your clusters, the controller you use may vary.

Ingress Resources | 173

Usually, customizing the behavior of your Ingress is done by adding specific annota‐

tions that are recognized by the Ingress controller.

Clusters running on Google’s GKE have the option to use Google’s Compute Load

Balancer for Ingress. AWS has a similar product called an Application Load Balancer.

These managed services provide a public IP address where the Ingress will listen for

requests.

These are good places to start if you need to use Ingress and are running Kubernetes

on Google Cloud or AWS. You can read through the documentation of each product

in their respective repositories:

• Google Ingress documentation

• AWS Ingress documentation

You also have the option to install and run your own Ingress controller inside your

cluster, or even run multiple controllers if you like. Some popular options include:

 nginx-ingress

NGINX has long been a popular load balancer tool, even before Kubernetes came

into the scene. This controller brings much of the functionality and features

offered by NGINX to Kubernetes. There are other ingress controllers based on

NGINX, but this is the official one.

 Contour

Here is yet another useful Kubernetes tool maintained by the folks at Heptio,

whom you will see mentioned several times throughout this book. Contour

actually uses another tool under the hood called Envoy to proxy requests

between clients and Pods.

 Traefik

This is a lightweight proxy tool that can automatically manage TLS certificates

for your Ingress.

Each of these controllers has different features, and comes with its own setup and

installation instructions, as well as its own ways of handling things like routes and

certificates. Read about the different options and try them out in your own cluster,

with your own applications, to get a feel for how they work.

Istio

Istio is an example of what’s often referred to as a service mesh, and becomes very use‐

ful when teams have multiple applications and services that communicate with each

other. It handles routing and encrypting network traffic between services, and adds

important features like metrics, logs, and load balancing.

174 | Chapter 9: Managing Pods

Istio is an optional add-on component to many hosted Kubernetes clusters, including

Google Kubernetes Engine (check the documentation for your provider to see how to

enable Istio).

If you want to install Istio in a self-hosted cluster, use the official Istio Helm chart.

If your applications rely heavily on communicating with each other, Istio may be

worth researching. Istio deserves a book of its own, and will probably get one, but in

the meantime a great place to start is the introductory documentation.

Envoy

Most managed Kubernetes services, such as Google Kubernetes Engine, provide some

kind of cloud load balancer integration. For example, when you create a Service of

type LoadBalancer on GKE, or an Ingress, a Google Cloud Load Balancer is automat‐

ically created and connected to your service.

While these standard cloud load balancers scale well, they are very simple, and don’t

give you much to configure. For example, the default load balancing algorithm is usu‐

ally random (see “Service Resources” on page 60). This sends each connection to a dif‐

ferent backend at random.

However, random isn’t always what you want. For example, if requests to your service

can be long-running and CPU-intensive, some of your backend nodes may get over‐

loaded while others remain idle.

A smarter algorithm would route requests to the backend that is least busy. This is

sometimes known as leastconn or LEAST_REQUEST.

For more sophisticated load balancing like this, you can use a product called Envoy.

This is not part of Kubernetes itself, but it’s commonly used with Kubernetes applica‐

tions.

Envoy is a high-performance C++ distributed proxy designed for single services and

applications, but can also be used as part of a service mesh architecture (see “Istio” on

page 174).

Developer Mark Vincze has written a great blog post detailing how to set up and configure Envoy in Kubernetes.

Summary

Ultimately, everything in Kubernetes is about running Pods. We’ve gone into some

detail about them, therefore, and we apologize if it’s too much. You don’t need to

understand or remember everything we’ve covered in this chapter, at least for now.

Envoy | 175

Later on, you may run into problems that the more advanced topics in this chapter

can help you solve.

The basic ideas to remember:

• Labels are key-value pairs that identify resources, and can be used with selectors

to match a specified group of resources.

• Node affinities attract or repel Pods to or from nodes with specified attributes.

For example, you can specify that a Pod can only run on a node in a specified

availability zone.

• While hard node affinities can block a Pod from running, soft node affinities are

more like suggestions to the scheduler. You can combine multiple soft affinities

with different weights.

• Pod affinities express a preference for Pods to be scheduled on the same node as

other Pods. For example, Pods that benefit from running on the same node can

express that using a Pod affinity for each other.

• Pod anti-affinities repel other Pods instead of attracting. For example, an anti-

affinity to replicas of the same Pod can help spread your replicas evenly across

the cluster.

• Taints are a way of tagging nodes with specific information; usually, about node

problems or failures. By default, Pods won’t be scheduled on tainted nodes.

• Tolerations allow a Pod to be scheduled on nodes with a specific taint. You can

use this mechanism to run certain Pods only on dedicated nodes.

• DaemonSets allow you to schedule one copy of a Pod on every node (for exam‐

ple, a logging agent).

• StatefulSets start and stop Pod replicas in a specific numbered sequence, allowing

you to address each by a predictable DNS name. This is ideal for clustered appli‐

cations, such as databases.

• Jobs run a Pod once (or a specified number of times) before completing. Simi‐

larly, Cronjobs run a Pod periodically at specified times.

• Horizontal Pod Autoscalers watch a set of Pods, trying to optimize a given metric

(such as CPU utilization). They increase or decrease the desired number of repli‐

cas to achieve the specified goal.

• PodPresets can inject bits of common configuration into all selected Pods at cre‐

ation time. For example, you could use a PodPreset to mount a particular Volume

on all matching Pods.

• Custom Resource Definitions (CRDs) allow you to create your own custom

Kubernetes objects, to store any data you wish. Operators are Kubernetes client

176 | Chapter 9: Managing Pods

programs that can implement orchestration behavior for your specific applica‐

tion (for example, MySQL).

• Ingress resources route requests to different services, depending on a set of rules,

for example, matching parts of the request URL. They can also terminate TLS

connections for your application.

• Istio is a tool that provides advanced networking features for microservice appli‐

cations and can be installed, like any Kubernetes application, using Helm.

• Envoy provides more sophisticated load balancing features than standard cloud

load balancers, as well as a service mesh facility.

Summary | 177

CHAPTER 10

Configuration and Secrets

If you want to keep a secret, you must also hide it from yourself.

—George Orwell, 1984

It’s very useful to be able to separate the logic of your Kubernetes application from its

 configuration: that is, any values or settings that might change over the life of the

application. Configuration values commonly include things like environment-specific

settings, DNS addresses of third-party services, and authentication credentials.

While you could simply put these values directly into your code, that’s not a very flex‐

ible approach. For one thing, changing a configuration value would require a com‐

plete rebuild and redeploy of the application. It’s much better to separate these values

out from the code and read them in from a file, or from environment variables.

Kubernetes provides a few different ways to help you manage configuration. One is to

pass values to the application via environment variables in the Pod spec (see “Envi‐

ronment Variables” on page 140). Another is to store configuration data directly in

Kubernetes, using the ConfigMap and Secret objects.

In this chapter we’ll explore ConfigMaps and Secrets in detail, and look at some prac‐

tical techniques for managing configuration and secrets in applications, using the

demo application as an example.

ConfigMaps

The ConfigMap is the primary object for storing configuration data in Kubernetes.

You can think of it as being a named set of key-value pairs that stores configuration

data. Once you have a ConfigMap, you can supply that data to an application either

by creating a file in the Pod, or by injecting it into the Pod’s environment.

179

In this section, we’ll look at some different ways to get data into a ConfigMap, and

then explore the various ways you can extract that data and feed it into your Kuber‐

netes application.

Creating ConfigMaps

Suppose you want to create a YAML configuration file in your Pod’s filesystem named

 config.yaml, with the following contents:

autoSaveInterval: 60

batchSize: 128

protocols:

- http

- https

Given this set of values, how do you turn them into a ConfigMap resource that you

can apply to Kubernetes?

One way is to specify that data, as literal YAML values, in the ConfigMap manifest.

This is what the manifest for a ConfigMap object looks like:

apiVersion: v1

data:

 config.yaml: |

 autoSaveInterval: 60

 batchSize: 128

 protocols:

 - http

 - https

kind: ConfigMap

metadata:

name: demo-config

namespace: demo

You could create a ConfigMap by writing the manifest from scratch, and adding the

values from config.yaml into the data section, as we’ve done in this example.

An easier way, though, is to let kubectl do some of the work for you. You can create a

ConfigMap directly from a YAML file as follows:

kubectl create configmap demo-config --namespace=demo --from-file=config.yaml

configmap "demo-config" created

To export the manifest file that corresponds to this ConfigMap, run:

kubectl get configmap/demo-config --namespace=demo --export -o yaml

 >demo-config.yaml

This writes a YAML manifest representation of the cluster’s ConfigMap resource to

the file demo-config.yaml. The --export flag strips out metadata we don’t need to

keep in our infrastructure repo (see “Exporting Resources” on page 118).

180 | Chapter 10: Configuration and Secrets

Setting Environment Variables from ConfigMaps

Now that we have the required configuration data in a ConfigMap object, how do we

then get that data into a container? Let’s look at a complete example using our demo

application. You’ll find the code in the hello-config-env directory of the demo repo.

It’s the same demo application we’ve used in previous chapters that listens for HTTP

requests and responds with a greeting (see “Looking at the Source Code” on page 23).

This time, though, instead of hard coding the string Hello into the application, we’d

like to make the greeting configurable. So there’s a slight modification to the handler

function to read this value from the environment variable GREETING:

func handler(w http.ResponseWriter, r *http.Request) {

greeting := os.Getenv("GREETING")

fmt.Fprintf(w, "%s, 世界\n", greeting)

}

Don’t worry about the exact details of the Go code; it’s just a demo. Suffice it to say

that if the GREETING environment variable is present when the program runs, it will

use that value when responding to requests. Whatever language you’re using to write

applications, it’s a good bet that you’ll be able to read environment variables with it.

Now, let’s create the ConfigMap object to hold the greeting value. You’ll find the man‐

ifest file for the ConfigMap, along with the modified Go application, in the hello-

 config-env directory of the demo repo.

It looks like this:

apiVersion: v1

kind: ConfigMap

metadata:

name: demo-config

data:

greeting: Hola

In order to make this data visible in the container’s environment, we need to modify

the Deployment slightly. Here’s the relevant part of the demo Deployment:

spec:

containers:

- name: demo

image: cloudnatived/demo:hello-config-env

ports:

- containerPort: 8888

env:

 - name: GREETING

 valueFrom:

 configMapKeyRef:

 name: demo-config

 key: greeting

ConfigMaps | 181

Note that we’re using a different container image tag to that in previous examples (see

“Image Identifiers” on page 137). The :hello-config-env tag gets us the modified

version of the demo application that reads the GREETING variable: cloudnatived/

demo:hello-config-env.

The second point of interest is the env section. Remember from “Environment Vari‐

ables” on page 140 that you can create environment variables with literal values by

adding a name/value pair.

We still have name here, but instead of value, we’ve specified valueFrom. This tells

Kubernetes that, rather than taking a literal value for the variable, it should look else‐

where to find the value.

configMapKeyRef tells it to reference a specific key in a specific ConfigMap. The

name of the ConfigMap to look at is demo-config, and the key we want to look up is

greeting. We created this data with the ConfigMap manifest, so it should be now be

available to read into the container’s environment.

If the ConfigMap doesn’t exist, the Deployment won’t be able to run (its Pod will

show a status of CreateContainerConfigError).

That’s everything you need to make the updated application work, so go ahead and

deploy the manifests to your Kubernetes cluster. From the demo repo directory, run

the following command:

kubectl apply -f hello-config-env/k8s/

configmap "demo-config" created

deployment.extensions "demo" created

As before, to see the application in your web browser, you’ll need to forward a local

port to the Pod’s port 8888:

kubectl port-forward deploy/demo 9999:8888

Forwarding from 127.0.0.1:9999 -> 8888

Forwarding from [::1]:9999 -> 8888

(We didn’t bother creating a Service this time; while you’d use a Service with a real

production app, for this example we’ve just used kubectl to forward the local port

directly to the demo Deployment.)

If you point your web browser to http://localhost:9999/ you should see, if all is well:

Hola, 世界

182 | Chapter 10: Configuration and Secrets

Exercise

In another terminal (you’ll need to leave the kubectl port-forward command run‐

ning), edit the configmap.yaml file to change the greeting. Reapply the file with

kubectl. Refresh the web browser. Does the greeting change? If not, why not? What

do you need to do to get the application to read the updated value? (“Updating Pods

on a Config Change” on page 186 may help.)

Setting the Whole Environment from a ConfigMap

While you can set one or two environment variables from individual ConfigMap

keys, as we saw in the previous example, that could get tedious for a large number of

variables.

Fortunately, there’s an easy way to take all the keys from a ConfigMap and turn them

into environment variables, using envFrom:

spec:

containers:

- name: demo

image: cloudnatived/demo:hello-config-env

ports:

- containerPort: 8888

envFrom:

 - configMapRef:

 name: demo-config

Now every setting in the demo-config ConfigMap will be a variable in the container’s

environment. Because in our example ConfigMap the key is called greeting, the

environment variable will also be named greeting (in lowercase). To make your

environment variable names uppercase when you’re using envFrom, change them in

the ConfigMap.

You can also set other environment variables for the container in the normal way,

using env; either by putting the literal values in the manifest file, or using a Config

MapKeyRef as in our previous example. Kubernetes allows you to use either env, env

From, or both at once, to set environment variables.

If a variable set in env has the same name as one set in envFrom, it will take prece‐

dence. For example, if you set the variable GREETING in both env and a ConfigMap

referenced in envFrom, the value specified in env will override the one from the Con‐

figMap.

ConfigMaps | 183

Using Environment Variables in Command Arguments

While it’s useful to be able to put configuration data into a container’s environment,

sometimes you need to supply it as command-line arguments for the container’s

entrypoint instead.

You can do this by sourcing the environment variables from the ConfigMap, as in the

previous example, but using the special Kubernetes syntax $(VARIABLE) to reference

them in the command-line arguments.

In the hello-config-args directory of the demo repo, you’ll find this example in the

 deployment.yaml file:

spec:

containers:

- name: demo

image: cloudnatived/demo:hello-config-args

args:

 - "-greeting"

 - "$(GREETING)"

ports:

- containerPort: 8888

env:

- name: GREETING

valueFrom:

configMapKeyRef:

name: demo-config

key: greeting

Here we’ve added an args field for the container spec, which will pass our custom

arguments to the container’s default entrypoint (/bin/demo).

Kubernetes replaces anything of the form $(VARIABLE) in a manifest with the value of

the environment variable VARIABLE. Since we’ve created the GREETING variable and set

its value from the ConfigMap, it’s available for use in the container’s command line.

When you apply these manifests, the value of GREETING will be passed to the demo

app in this way:

kubectl apply -f hello-config-args/k8s/

configmap "demo-config" configured

deployment.extensions "demo" configured

You should see the effect in your web browser:

Salut, 世界

Creating Config Files from ConfigMaps

We’ve seen a couple of different ways of getting data from Kubernetes ConfigMaps

into applications: via the environment, and via the container command line. More

184 | Chapter 10: Configuration and Secrets

complex applications, however, often expect to read their configuration from files on

disk.

Fortunately, Kubernetes gives us a way to create such files directly from a ConfigMap.

First, let’s change our ConfigMap so that instead of a single key, it stores a complete

YAML file (which happens to only contain one key, but it could be a hundred, if you

like):

apiVersion: v1

kind: ConfigMap

metadata:

name: demo-config

data:

config: |

greeting: Buongiorno

Instead of setting the key greeting, as we did in the previous example, we’re creating

a new key called config, and assigning it a block of data (the pipe symbol | in YAML

indicates that what follows is a block of raw data). This is the data:

greeting: Buongiorno

It happens to be valid YAML, but don’t be confused by that; it could be JSON, TOML,

plain text, or any other format. Whatever it is, Kubernetes will eventually write the

whole block of data, as is, to a file on our container.

Now that we’ve stored the necessary data, let’s deploy it to Kubernetes. In the hello-

 config-file directory of the demo repo, you’ll find the Deployment template, contain‐

ing:

spec:

containers:

- name: demo

image: cloudnatived/demo:hello-config-file

ports:

- containerPort: 8888

volumeMounts:

 - mountPath: /config/

 name: demo-config-volume

 readOnly: true

 volumes:

 - name: demo-config-volume

 configMap:

 name: demo-config

 items:

 - key: config

 path: demo.yaml

Looking at the volumes section, you can see that we create a Volume named demo-

config-volume, from the existing demo-config ConfigMap.

ConfigMaps | 185

In the container’s volumeMounts section, we mount this volume on the mountPath: /

config/, select the key config, and write it to the path demo.yaml. The result of this

will be that Kubernetes will create a file in the container at /config/demo.yaml, con‐

taining the demo-config data in YAML format:

greeting: Buongiorno

The demo application will read its config from this file on startup. As before, apply

the manifests using this command:

kubectl apply -f hello-config-file/k8s/

configmap "demo-config" configured

deployment.extensions "demo" configured

You should see the results in your web browser:

Buongiorno, 世界

If you want to see what the ConfigMap data looks like in the cluster, run the following

command:

kubectl describe configmap/demo-config

Name: demo-config

Namespace: default

Labels: <none>

Annotations:

kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"v1",

"data":{"config":"greeting: Buongiorno\n"},"kind":"ConfigMap","metadata":

{"annotations":{},"name":"demo-config","namespace":"default...

Data

====

config:

greeting: Buongiorno

Events: <none>

If you update a ConfigMap and change its values, the corresponding file (/config/

 demo.yaml in our example) will be updated automatically. Some applications may

autodetect that their config file has changed and reread it; others may not.

One option is to redeploy the application to pick up the changes (see “Updating Pods

on a Config Change” on page 186), but this may not be necessary if the application

has a way to trigger a live reload, such as a Unix signal (for example SIGHUP) or run‐

ning a command in the container.

Updating Pods on a Config Change

Suppose you have a Deployment running in your cluster, and you want to change

some values in its ConfigMap. If you’re using a Helm chart (see “Helm: A Kubernetes

186 | Chapter 10: Configuration and Secrets

Package Manager” on page 64) there’s a neat trick to have it automatically detect a

config change and reload your Pods. Add this annotation to your Deployment spec:

checksum/config: {{ include (print $.Template.BasePath "/configmap.yaml") .

 | sha256sum }}

Because the Deployment template now includes a hash sum of the config settings, if

these settings change, then so will the hash. When you run helm upgrade, Helm will

detect that the Deployment spec has changed, and restart all the Pods.

Kubernetes Secrets

We’ve seen that the Kubernetes ConfigMap object provides a flexible way of storing

and accessing configuration data in the cluster. However, most applications have

some config data that is secret and sensitive, such as passwords or API keys. While we

could use ConfigMaps to store these, that’s not an ideal solution.

Instead, Kubernetes provides a special type of object intended to store secret data: the

Secret. Let’s see an example of how to use it with the demo application.

First, here’s the Kubernetes manifest for the Secret (see hel o-secret-env/k8s/

 secret.yaml):

apiVersion: v1

kind: Secret

metadata:

name: demo-secret

stringData:

magicWord: xyzzy

In this example, the secret key is magicWord, and the secret value is the word xyzzy (a

very useful word in computing). As with a ConfigMap, you can put multiple keys and

values into a Secret. Here, just to keep things simple, we’re only using one key-value

pair.

Using Secrets as Environment Variables

Just like ConfigMaps, Secrets can be made visible to containers by putting them into

environment variables, or mounting them as a file on the container’s filesystem. In

this example, we’ll set an environment variable to the value of the Secret:

spec:

containers:

- name: demo

image: cloudnatived/demo:hello-secret-env

ports:

- containerPort: 8888

env:

- name: GREETING

valueFrom:

Kubernetes Secrets | 187

 secretKeyRef:

 name: demo-secret

 key: magicWord

We set the environment variable GREETING exactly as we did when using a Config‐

Map, except that now it’s a secretKeyRef instead of a configMapKeyRef (see “Setting

Environment Variables from ConfigMaps” on page 181).

Run the following command in the demo repo directory to apply these manifests:

kubectl apply -f hello-secret-env/k8s/

deployment.extensions "demo" configured

secret "demo-secret" created

As before, forward a local port to the Deployment so you can see the results in your

web browser:

kubectl port-forward deploy/demo 9999:8888

Forwarding from 127.0.0.1:9999 -> 8888

Forwarding from [::1]:9999 -> 8888

Browse to http://localhost:9999/ and you should see:

The magic word is "xyzzy"

Writing Secrets to Files

In this example we’ll mount the Secret on the container as a file. You’ll find the code

for this example in the hello-secret-file folder of the demo repo.

In order to mount the Secret in a file on the container, we use a Deployment like this:

spec:

containers:

- name: demo

image: cloudnatived/demo:hello-secret-file

ports:

- containerPort: 8888

volumeMounts:

 - name: demo-secret-volume

 mountPath: "/secrets/"

 readOnly: true

 volumes:

 - name: demo-secret-volume

 secret:

 secretName: demo-secret

Just as we did in “Creating Config Files from ConfigMaps” on page 184, we create a

Volume (demo-secret-volume in this example), and mount it on the container in the

volumeMounts section of the spec. The mountPath is /secrets, and Kubernetes will

create one file in this directory for each of the key-value pairs defined in the Secret.

188 | Chapter 10: Configuration and Secrets

We’ve only defined one key-value pair in the example Secret, named magicWord, so

this manifest will create the read-only file /secrets/magicWord on the container, and

the contents of the file will be the secret data.

If you apply this manifest in the same way as for the previous example, you should

see the same results:

The magic word is "xyzzy"

Reading Secrets

In the previous section we were able to use kubectl describe to see the data inside

the ConfigMap. Can we do the same with a Secret?

kubectl describe secret/demo-secret

Name: demo-secret

Namespace: default

Labels: <none>

Annotations:

Type: Opaque

Data

====

magicWord: 5 bytes

Notice that this time, the actual data is not shown. Kubernetes Secrets are Opaque,

which means they’re not shown in kubectl describe output, in log messages, or in

the terminal. This prevents secret data being exposed accidentally.

You can see an obfuscated version of the secret data by using kubectl get with

YAML output format:

kubectl get secret/demo-secret -o yaml

apiVersion: v1

data:

magicWord: eHl6enk=

kind: Secret

metadata:

...

type: Opaque

base64

What’s that eHl6enk=? That doesn’t look much like our original secret data. In fact, it’s

a base64 representation of the Secret. Base64 is a scheme for encoding arbitrary

binary data as a character string.

Because the secret data could be nonprintable binary data (for example, a TLS

encryption key), Kubernetes Secrets are always stored in base64 format.

Kubernetes Secrets | 189

The text beHl6enk= is the base64-encoded version of our secret word xyzzy. You can

verify this using the base64 --decode command in the terminal:

echo "eHl6enk=" | base64 --decode

xyzzy

So although Kubernetes protects you from accidentally printing secret data to the ter‐

minal, or in log files, if you have permission to read the Secrets in a particular name‐

space, you can get the data in base64 format and then decode it.

If you need to base64-encode some text (for instance, to add it to a Secret), use the

base64 tool without any arguments:

echo xyzzy | base64

eHl6enkK

Access to Secrets

Who can read or edit Secrets? That’s controlled by the Kubernetes access control

mechanism, RBAC, which we’ll talk about in much more detail in “Introducing Role-

Based Access Control (RBAC)” on page 200. If you’re using a cluster that doesn’t sup‐

port RBAC or doesn’t have it enabled, then all Secrets are accessible to any user or any

container. (You absolutely shouldn’t be running any cluster in production without

RBAC, as we’ll explain.)

Encryption at Rest

What about someone with access to the etcd database where all Kubernetes informa‐

tion is stored? Could they access the secret data, even without API permissions to

read the Secret object?

From Kubernetes version 1.7 onwards, encryption at rest is supported. That means

that the secret data in the etcd database is actually stored encrypted on disk, and

unreadable even to someone who can access the database directly. Only the Kuber‐

netes API server has the key to decrypt this data. In a properly configured cluster,

encryption at rest should be enabled.

You can check whether encryption at rest is enabled in your cluster by running:

kubectl describe pod -n kube-system -l component=kube-apiserver |grep encryption

--experimental-encryption-provider-config=...

If you don’t see the experimental-encryption-provider-config flag, then encryp‐

tion at rest is not enabled. (If you’re using Google Kubernetes Engine, or some other

managed Kubernetes services, your data is encrypted using a different mechanism

and you won’t see this flag. Check with your Kubernetes provider to find out whether

etcd data is encrypted or not.)

190 | Chapter 10: Configuration and Secrets

Keeping Secrets

Sometimes you’ll have Kubernetes resources that you never want to be deleted from

the cluster, such as a particularly important Secret. Using a Helm-specific annotation,

you can prevent a resource from being removed:

kind: Secret

metadata:

annotations:

"helm.sh/resource-policy": keep

Secrets Management Strategies

In the example in the previous section, our secret data was protected against unau‐

thorized access once it was stored in the cluster. But the secret data was represented

in plain text in our manifest files.

You should never expose secret data like this in files that are committed to source

control. So how do you manage and store secret data securely before it’s applied to the

Kubernetes cluster?

Whatever tool or strategy you choose for managing secrets in your applications,

you’ll need it to answer at least the following questions:

1. Where do you store secrets so that they are highly available?

2. How do you make secrets available to your running applications?

3. What needs to happen to your running applications when you rotate or change

secrets?

In this section we’ll look at three of the most popular secrets management strategies,

and examine how each of them tackles these questions.

Encrypt Secrets in Version Control

The first option for secrets management is to store your secrets directly in code, in

version control repositories, but in encrypted form, and decrypt them at deploy time.

This is probably the simplest choice. Secrets are put directly into source code repos,

but never in plain text. Instead, they are encrypted in a form that can only be decryp‐

ted with a certain trusted key.

When you deploy the application, the secrets are decrypted just before the Kuber‐

netes manifests are applied to the cluster. The application can then read and use the

secrets just like any other configuration data.

Secrets Management Strategies | 191

Encrypting secrets in version control lets you review and track changes to secrets, just

as you would changes to application code. And so long as your version control repo‐

sitories are highly available, your secrets will be highly available as well.

To change or rotate secrets, just decrypt them in your local copy of the source, update

them, re-encrypt, and commit the change to version control.

While this strategy is simple to implement and has no dependencies except the key

and the encryption/decryption tool (see “Encrypting Secrets with Sops” on page 194),

there’s one potential drawback. If the same secret is used by multiple applications,

they all need a copy of it in their source code. This means rotating the secret is more

work, because you have to make sure you’ve found and changed all instances of it.

There is also a serious risk of accidentally committing plain-text secrets to version

control. Mistakes do happen, and even with private version control repositories, any

secret so committed should be considered compromised, and you should rotate it as

soon as possible. You may want to restrict access to the encryption key to only certain

individuals, rather than handing it out to all developers.

Nonetheless, the encrypt secrets in source code strategy is a good starting point for

small organizations with noncritical secrets. It’s relatively low-touch and easy to set

up, while still being flexible enough to handle multiple apps and different types of

secret data. In the final section of this chapter, we’ll outline some options for encryp‐

tion/decryption tools you can use to do this, but first, let’s briefly describe the other

secrets management strategies.

Store Secrets Remotely

Another option for secrets management is to keep them in a file (or multiple files) in

a remote, secure file storage, such as an AWS S3 bucket, or Google Cloud Storage.

When you deploy an individual application, the files would be downloaded, decryp‐

ted, and provided to the application. This is similar to the encrypt secrets in version

 control option, except that instead of living in the source code repo, the secrets are

stored centrally. You can use the same encryption/decryption tool for both strategies.

This solves the problem of secrets being duplicated across multiple code repos, but it

does need a little extra engineering and coordination to pull the relevant secrets file

down at deploy time. This gives you some of the benefits of a dedicated secrets man‐

agement tool, but without having to set up and manage an extra software component,

or refactoring your apps to talk to it.

Because your secrets are not in version control, though, you’ll need a process to han‐

dle changing secrets in an orderly way, ideally with an audit log (who changed what,

when, and why), and some kind of change control procedure equivalent to a pull

request review and approval.

192 | Chapter 10: Configuration and Secrets

Use a Dedicated Secrets Management Tool

While the encrypt secrets in source code and keep secrets in a bucket strategies are fine

for most organizations, at very large scale you may need to think about using a dedi‐

cated secrets management tool, such as Hashicorp’s Vault, Square’s Keywhiz, AWS

Secrets Manager, or Azure’s Key Vault. These tools handle securely storing all of your

application secrets in one central place in a highly available way, and can also control

which users and service accounts have permissions to add, remove, change, or view

secrets.

In a secrets management system, all actions are audited and reviewable, making it

easier to analyze security breaches and prove regulatory compliance. Some of these

tools also provide the ability to automatically rotate secrets on a regular basis, which

is not only a good idea in any case, but is also required by many corporate security

policies.

How do applications get their data from a secrets management tool? One common

way is to use a service account with read-only access to the secrets vault, so that each

application can only read the secrets it needs. Developers can have their own individ‐

ual credentials, with permission to read or write secrets for only the applications that

they’re responsible for.

While a central secrets management system is the most powerful and flexible option

available, it also adds significant complexity to your infrastructure. As well as setting

up and running the secrets vault, you will need to add tooling or middleware to each

application and service that consumes secrets. While applications can be refactored

or redesigned to access the secrets vault directly, this may be more expensive and

time-consuming than simply adding a layer in front of them that gets secrets and puts

them in the application’s environment or config file.

Of the various options, one of the most popular is Vault, from Hashicorp.

Recommendations

While, at first glance, a dedicated secrets management system such as Vault might

seem to be the logical choice, we don’t recommend you start with this. Instead, try

out a lightweight encryption tool such as Sops (see “Encrypting Secrets with Sops” on

page 194), encrypting secrets directly in your source code.

Why? Well, you may not actually have that many secrets to manage. Unless your

infrastructure is very complex and interdependent, which you should be avoiding

anyway, any individual application should only need one or two pieces of secret data:

API keys and tokens for other services, for example, or database credentials. If a given

app really needs a great many different secrets, you might consider putting them all in

a single file and encrypting that instead.

Secrets Management Strategies | 193

We take a pragmatic approach to secrets management, as we have with most issues

throughout this book. If a simple, easy-to-use system solves your problem, start there.

You can always switch to a more powerful or complicated setup later. It’s often hard to

know at the beginning of a project exactly how much secret data will be involved, and

if you’re not sure, choose the option that gets you up and running most quickly,

without limiting your choices in the future.

That said, if you know from the outset that there are regulatory or compliance restric‐

tions on your handling of secret data, it’s best to design with that in mind, and you

will probably need to look at a dedicated secrets management solution.

Encrypting Secrets with Sops

Assuming that you’re going to do your own encryption, at least to start with, you’ll

need an encryption tool that can work with your source code and data files. Sops

(short for secrets operations), from the Mozilla project, is an encryption/decryption

tool that can work with YAML, JSON, or binary files, and supports multiple encryp‐

tion backends, including PGP/GnuPG, Azure Key Vault, AWS’s Key Management

Service (KMS), and Google’s Cloud KMS.

Introducing Sops

Let’s introduce Sops by showing what it does. Rather than encrypting the whole file,

Sops encrypts only the individual secret values. For example, if your plain-text file

contains:

password: foo

when you encrypt it with Sops, the resulting file will look like this:

password: ENC[AES256_GCM,data:p673w==,iv:YY=,aad:UQ=,tag:A=]

This makes it easy to edit and review code, especially in pull requests, without need‐

ing to decrypt the data in order to understand what it is.

Visit the Sops project home page for installation and usage instructions.

In the remainder of this chapter, we’ll run through some examples of using Sops, see

how it works with Kubernetes, and add some Sops-managed secrets to our demo app.

But first, we should mention that other secrets encryption tools are available. If you’re

already using a different tool, that’s fine: as long as you can encrypt and decrypt

secrets within plain-text files in the same way as Sops does, use whichever tool works

best for you.

We’re fans of Helm, as you’ll know if you’ve read this far, and if you need to manage

encrypted secrets in a Helm chart, you can do that with Sops using the helm-secrets

plug-in. When you run helm upgrade or helm install, helm-secrets will decrypt

194 | Chapter 10: Configuration and Secrets

your secrets for deployment. For more information about Sops, including installation

and usage instructions, consult the GitHub repo.

Encrypting a File with Sops

Let’s try out Sops by encrypting a file. As we mentioned, Sops doesn’t actually handle

encryption itself; it delegates that to a backend such as GnuPG (a popular open

source implementation of the Pretty Good Privacy, or PGP, protocol). We’ll use Sops

with GnuPG in this example to encrypt a file containing a secret. The end result will

be a file that you can safely commit to version control.

We won’t get into the details of how PGP encryption works, but just know that, like

SSH and TLS, it’s a public key cryptosystem. Instead of encrypting data with a single

key, it actually uses a pair of keys: one public, one private. You can safely share your

public key with others, but you should never give out your private key.

Let’s generate your key pair now. First, install GnuPG, if you haven’t got it already.

Once that’s installed, run this command to generate a new key pair:

gpg --gen-key

Once your key has been successfully generated, make a note of the Key fingerprint

(the string of hex digits): this uniquely identifies your key, and you’ll need it in the

next step.

Now that you have a key pair, let’s encrypt a file using Sops and your new PGP key.

You will also need to have Sops installed on your machine, if you haven’t already.

There are binaries available for download, or you can install it with Go:

go get -u go.mozilla.org/sops/cmd/sops

sops -v

sops 3.0.5 (latest)

Now let’s create a test secret file to encrypt:

echo "password: secret123" > test.yaml

cat test.yaml

password: secret123

And finally, use Sops to encrypt it. Pass your key fingerprint to the --pgp switch, with

the spaces removed, like this:

sops --encrypt --in-place --pgp E0A9AF924D5A0C123F32108EAF3AA2B4935EA0AB

test.yaml cat test.yaml

password: ENC[AES256_GCM,data:Ny220Ml8JoqP,iv:HMkwA8eFFmdUU1Dle6NTpVgy8vlQu/

6Zqx95Cd/+NL4=,tag:Udg9Wef8coZRbPb0foOOSA==,type:str]

sops:

...

Encrypting Secrets with Sops | 195

Success! Now the test.yaml file is encrypted securely, and the value of password is

scrambled and can only be decrypted with your private key. You will also notice that

Sops added some metadata to the bottom of file, so that it will know how to decrypt it

in the future.

Another nice feature of Sops is that only the value of password is encrypted, so the

YAML format of the file is preserved, and you can see that the encrypted data is

labeled password. If you have a long list of key-value pairs in your YAML file, Sops

will encrypt only the values, leaving the keys alone.

To make sure that we can get the encrypted data back, and to check that it matches

what we put in, run:

sops --decrypt test.yaml

You need a passphrase to unlock the secret key for

user: "Justin Domingus <justin@example.com>"

2048-bit RSA key, ID 8200750F, created 2018-07-27 (main key ID 935EA0AB)

Enter passphrase: *highly secret passphrase*

password: secret123

Remember the passphrase that you chose when you generated your key pair? We

hope so, because you need to type it in now! If you remembered it right, you will see

the decrypted value of password: secret123.

Now you know how to use Sops, you can encrypt any sensitive data in your source

code, whether that’s application config files, Kubernetes YAML resources, or anything

else.

When it comes time to deploy the application, use Sops in decrypt mode to produce

the plain-text secrets that you need (but remember to delete the plain-text files, and

don’t check them in to version control!).

In the next chapter, we’ll show you how to use Sops this way with Helm charts. You

can not only decrypt secrets when deploying your application with Helm, but also use

different sets of secrets, depending on the deployment environment: for example,

staging versus production (see “Managing Helm Chart Secrets with Sops” on page

226).

Using a KMS Backend

If you are using Amazon KMS or Google Cloud KMS for key management in the

cloud, you can also use them with Sops. Using a KMS key works exactly the same as

in our PGP example, but the metadata in the file will be different. Instead, the sops:

section at the bottom might look something like this:

sops:

kms:

196 | Chapter 10: Configuration and Secrets

 - created_at: 1441570389.775376

enc: CiC....Pm1Hm

arn: arn:aws:kms:us-east-1:656532927350:key/920aff2e...

Just like with our PGP example, the key ID (arn:aws:kms...) is embedded in the file

so that Sops knows how to decrypt it later.

Summary

Configuration and secrets is one of the topics that people ask us about the most in

relation to Kubernetes. We’re glad to be able to devote a chapter to it, and to outline

some of the ways you can connect your applications with the settings and data they

need.

The most important things we’ve learned:

• Separate your configuration data from application code and deploy it using

Kubernetes ConfigMaps and Secrets. That way, you don’t need to redeploy your

app every time you change a password.

• You can get data into ConfigMaps by writing it directly in your Kubernetes mani‐

fest file, or use kubectl to convert an existing YAML file into a ConfigMap spec.

• Once data is in a ConfigMap, you can insert it into a container’s environment, or

into the command-line arguments of its entrypoint. Alternatively, you can write

the data to a file that is mounted on the container.

• Secrets work just like ConfigMaps, except that the data is encrypted at rest, and

obfuscated in kubectl output.

• A simple and flexible way to manage secrets is to store them directly in your

source code repo, but encrypt them using Sops, or another text-based encryption

tool.

• Don’t overthink secrets management, especially at first. Start with something

simple that’s easy to set up for developers.

• Where secrets are shared by many applications, you can store them (encrypted)

in a cloud bucket, and fetch them at deploy time.

• For enterprise-level secrets management, you’ll need a dedicated service such as

Vault. But don’t start with Vault, because you may end up not needing it. You can

always move to Vault later.

• Sops is an encryption tool that works with key-value files like YAML and JSON.

It can get its encryption key from a local GnuPG keyring, or cloud key manage‐

ment services like Amazon KMS and Google Cloud KMS.

Summary | 197

CHAPTER 11

Security and Backups

If you think technology can solve your security problems, then you don’t understand

the problems and you don’t understand the technology.

—Bruce Schneier, Applied Cryptography

In this chapter we’ll explore the security and access control machinery in Kubernetes,

including Role-Based Access Control (RBAC), outline some vulnerability scanning

tools and services, and explain how to back up your Kubernetes data and state (and

even more importantly, how to restore it). We’ll also look at some useful ways to get

information about what’s happening in your cluster.

Access Control and Permissions

Small tech companies tend to start out with just a few employees, and everyone has

administrator access on every system.

As the organization grows, though, eventually it becomes clear that it is no longer a

good idea for everyone to have administrator rights: it’s too easy for someone to make

a mistake and change something they shouldn’t. The same applies to Kubernetes.

Managing Access by Cluster

One of the easiest and most effective things you can do to secure your Kubernetes

cluster is limit who has access to it. There are generally two groups of people who

need to access Kubernetes clusters: cluster operators and application developers, and

they often need different permissions and privileges as part of their job function.

Also, you may well have multiple deployment environments, such as production and

staging. These separate environments will need different policies, depending on your

199

organization. Production may be restricted to only some individuals, whereas staging

may be open to a broader group of engineers.

As we saw in “Do I need multiple clusters?” on page 98, it’s often a good idea to have

separate clusters for production and staging or testing. If someone accidentally

deploys something in staging that brings down the cluster nodes, it will not impact

production.

If one team should not have have access to another team’s software and deployment

process, each team could have their own dedicated cluster and not even have creden‐

tials on the other team’s clusters.

This is certainly the most secure approach, but additional clusters come with trade‐

offs. Each needs to be patched and monitored, and many small clusters tend to run

less efficiently than larger clusters.

Introducing Role-Based Access Control (RBAC)

Another way you can manage access is by controlling who can perform certain opera‐

tions inside the cluster, using Kubernetes’s Role-Based Access Control (RBAC) sys‐

tem.

RBAC is designed to grant specific permissions to specific users (or service accounts,

which are user accounts associated with automated systems). For example, you can

grant the ability to list all Pods in the cluster to a particular user if they need it.

The first and most important thing to know about RBAC is that it should be turned

on. RBAC was introduced in Kubernetes 1.6 as an option when setting up clusters.

However, whether this option is actually enabled in your cluster depends on your

cloud provider or Kubernetes installer.

If you’re running a self-hosted cluster, try this command to see whether or not RBAC

is enabled on your cluster:

kubectl describe pod -n kube-system -l component=kube-apiserver

Name: kube-apiserver-docker-for-desktop

Namespace: kube-system

...

Containers:

kube-apiserver:

...

Command:

kube-apiserver

...

--authorization-mode=Node,RBAC

If --authorization-mode doesn’t contain RBAC, then RBAC is not enabled for your

cluster. Check the documentation for your service provider or installer to see how to

rebuild the cluster with RBAC enabled.

200 | Chapter 11: Security and Backups

Without RBAC, anyone with access to the cluster has the power to do anything,

including running arbitrary code or deleting workloads. This probably isn’t what you

want.

Understanding Roles

So, assuming you have RBAC enabled, how does it work? The most important con‐

cepts to understand are users, roles, and role bindings.

Every time you connect to a Kubernetes cluster, you do so as a specific user. Exactly

how you authenticate to the cluster depends on your provider; for example, in Google

Kubernetes Engine, you use the gcloud tool to get an access token to a particular

cluster.

There are other users configured in the cluster; for example, there is a default service

account for each namespace. All these users can potentially have different sets of per‐

missions.

These are governed by Kubernetes roles. A role describes a specific set of permissions.

Kubernetes includes some predefined roles to get you started. For example, the

cluster-admin role, intended for superusers, has access to read and change any

resource in the cluster. By contrast, the view role can list and examine most objects in

a given namespace, but not modify them.

You can define roles on the namespace level (using the Role object) or across the

whole cluster (using the ClusterRole object). Here’s an example of a ClusterRole man‐

ifest that grants read access to secrets in any namespace:

kind: ClusterRole

apiVersion: rbac.authorization.k8s.io/v1

metadata:

name: secret-reader

rules:

- apiGroups: [""]

resources: ["secrets"]

verbs: ["get", "watch", "list"]

Binding Roles to Users

How do you associate a user with a role? You can do that using a role binding. Just like

with roles, you can create a RoleBinding object that applies to a specific namespace,

or a ClusterRoleBinding that applies at the cluster level.

Here’s the RoleBinding manifest that gives the daisy user the edit role in the demo

namespace only:

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

Access Control and Permissions | 201

name: daisy-edit

namespace: demo

subjects:

- kind: User

name: daisy

apiGroup: rbac.authorization.k8s.io

roleRef:

kind: ClusterRole

name: edit

apiGroup: rbac.authorization.k8s.io

In Kubernetes, permissions are additive; users start with no permissions, and you can

add them using Roles and RoleBindings. You can’t subtract permissions from some‐

one who already has them.

You can read more about the details of RBAC, and the available

roles and permissions, in the Kubernetes documentation.

What Roles Do I Need?

So what roles and bindings should you set up in your cluster? The predefined roles

cluster-admin, edit, and view will probably cover most requirements. To see what

permissions a given role has, use the kubectl describe command:

kubectl describe clusterrole/edit

Name: edit

Labels: kubernetes.io/bootstrapping=rbac-defaults

Annotations: rbac.authorization.kubernetes.io/autoupdate=true

PolicyRule:

Resources ... Verbs

--------- ... -----

bindings ... [get list watch]

configmaps ... [create delete deletecollection get list patch update watch]

endpoints ... [create delete deletecollection get list patch update watch]

...

You could create roles for specific people or jobs within your organization (for exam‐

ple, a developer role), or individual teams (for example, QA or security).

Guard Access to Cluster-Admin

Be very careful about who has access to the cluster-admin role. This is the cluster

superuser, equivalent to the root user on Unix systems. It can do anything to any‐

thing. Never give this role to users who are not cluster operators, and especially not to

service accounts for apps which might be exposed to the internet, such as the Kuber‐

netes Dashboard (see “Kubernetes Dashboard” on page 214).

202 | Chapter 11: Security and Backups

Don’t fix problems by granting cluster-admin unnecessarily. You’ll

find some bad advice about this on sites like Stack Overflow. When

faced with a Kubernetes permissions error, a common response is

to grant the cluster-admin role to the application. Don’t do this.

Yes, it makes the errors go away, but at the expense of bypassing all

security checks and potentially opening up your cluster to an

attacker. Instead, grant the application a role with the fewest privi‐

leges it needs to do its job.

Applications and Deployment

Apps running in Kubernetes usually don’t need any RBAC permissions. Unless you

specify otherwise, all Pods will run as the default service account in their name‐

space, which has no roles associated with it.

If your app needs access to the Kubernetes API for some reason (for example, a mon‐

itoring tool that needs to list Pods), create a dedicated service account for the app, use

a RoleBinding to associate it with the necessary role (for example, view), and limit it

to specific namespaces.

What about the permissions required to deploy applications to the cluster? The most

secure way is to allow only a continuous deployment tool to deploy apps (see Chap‐

ter 14). It can use a dedicated service account, with permission to create and delete

Pods in a particular namespace.

The edit role is ideal for this. Users with the edit role can create and destroy resour‐

ces in the namespace, but can’t create new roles or grant permissions to other users.

If you don’t have an automated deployment tool, and developers have to deploy

directly to the cluster, they will need edit rights to the appropriate namespaces too.

Grant these on an application-by-application basis; don’t give anyone edit rights

across the whole cluster. People who don’t need to deploy apps should have only the

view role by default.

Best Practice

Make sure RBAC is enabled in all your clusters. Give cluster-

admin rights only to users who actually need the power to destroy

everything in the cluster. If your app needs access to cluster resour‐

ces, create a service account for it and bind it to a role with only the

permissions it needs, in only the namespaces where it needs them.

Access Control and Permissions | 203

RBAC Troubleshooting

If you’re running an older third-party application that isn’t RBAC-aware, or if you’re

still working out the required permissions for your own application, you may run

into RBAC permission errors. What do these look like?

If an application makes an API request for something it doesn’t have permission to do

(for example, list nodes) it will see a Forbidden error response (HTTP status 403)

from the API server:

Error from server (Forbidden): nodes.metrics.k8s.io is forbidden: User

"demo" cannot list nodes.metrics.k8s.io at the cluster scope.

If the application doesn’t log this information, or you’re not sure which application is

failing, you can check the API server’s log (see “Viewing a Container’s Logs” on page

119 for more about this). It will record messages like this, containing the string RBAC

DENY with a description of the error:

kubectl logs -n kube-system -l component=kube-apiserver | grep "RBAC DENY"

RBAC DENY: user "demo" cannot "list" resource "nodes" cluster-wide

(You won’t be able to do this on a GKE cluster, or any other managed Kubernetes ser‐

vice that doesn’t give you access to the control plane: see the documentation for your

Kubernetes provider to find out how to access API server logs.)

RBAC has a reputation for being complicated, but it’s really not. Just grant users the

minimum privileges they need, keep cluster-admin safe, and you’ll be fine.

Security Scanning

If you’re running third-party software in your cluster, it’s wise to check it for security

problems and malware. But even your own containers may have software in them

that you’re not aware of, and that needs to be checked too.

Clair

Clair is an open source container scanner produced by the CoreOS project. It stati‐

cally analyzes container images, before they are actually run, to see if they contain any

software or versions that are known to be insecure.

You can run Clair manually to check specific images for problems, or integrate it into

your CD pipeline to test all images before they are deployed (see Chapter 14).

Alternatively, Clair can hook into your container registry to scan any images that are

pushed to it and report problems.

204 | Chapter 11: Security and Backups

It’s worth mentioning that you shouldn’t automatically trust base images, such as

alpine. Clair is preloaded with security checks for many popular base images, and

will tell you immediately if you’re using one that has a known vulnerability.

Aqua

Aqua’s Container Security Platform is a full-service commercial container security offering, allowing organizations to scan containers for vulnerabilities, malware, and

suspicious activity, as well as providing policy enforcement and regulatory compli‐

ance.

As you’d expect, Aqua’s platform integrates with your container registry, CI/CD pipe‐

line, and multiple orchestration systems, including Kubernetes.

Aqua also offers a free-to-use tool called MicroScanner, that you can add to your con‐

tainer images to scan installed packages for known vulnerabilities from the same

database that the Aqua Security Platform uses.

MicroScanner is installed by adding it to a Dockerfile, like this:

ADD https://get.aquasec.com/microscanner /

RUN chmod +x /microscanner

RUN /microscanner <TOKEN> [--continue-on-failure]

MicroScanner outputs a list of detected vulnerabilities in JSON format, which you

can consume and report on using other tools.

Another handy open source tool from Aqua is kube-hunter, designed to find security

issues in your Kubernetes cluster itself. If you run it as a container on a machine out‐

side your cluster, as an attacker might, it will check for various kinds of problems:

exposed email addresses in certificates, unsecured dashboards, open ports and end‐

points, and so on.

Anchore Engine

The Anchore Engine is an open source tool for scanning container images, not only

for known vulnerabilities, but to identify the bill of materials of everything present in

the container, including libraries, configuration files, and file permissions. You can

use this to verify containers against user-defined policies: for example, you can block

any images that contain security credentials, or application source code.

Best Practice

Don’t run containers from untrusted sources or when you’re not

sure what’s in them. Run a scanning tool like Clair or MicroScan‐

ner over all containers, even those you build yourself, to make sure

there are no known vulnerabilities in any of the base images or

dependencies.

Security Scanning | 205

Backups

You might be wondering whether you still need backups in cloud native architectures.

After all, Kubernetes is inherently reliable and can handle the loss of several nodes at

once, without losing state or even degrading application performance too much.

Also, Kubernetes is a declarative infrastructure as code system. All Kubernetes

resources are described by data stored in a reliable database (etcd). In the event of

some Pods being accidentally deleted, their supervising Deployment will re-create

them from the spec held in the database.

Do I Need to Back Up Kubernetes?

So do you still need backups? Well, yes. The data stored on persistent volumes, for

example, is vulnerable to failure (see “Persistent Volumes” on page 148). While your

cloud vendor may provide nominally high-availability volumes (replicating the data

across two different availability zones, for example), that’s not the same as backup.

Let’s repeat that point, because it’s not obvious:

 Replication is not backup. While replication may protect you from

the failure of the underlying storage volume, it won’t protect you

from accidentally deleting the volume by mis-clicking in a web

console, for example.

Nor will replication prevent a misconfigured application from overwriting its data, or

an operator from running a command with the wrong environment variables and

accidentally dropping the production database instead of the development one. (This

has happened, probably more often than anyone’s willing to admit.)

Backing Up etcd

As we saw in “High Availability” on page 35, Kubernetes stores all its state in the etcd

database, so any failure or data loss here could be catastrophic. That’s one very good

reason why we recommend that you use managed services that guarantee the availa‐

bility of etcd and the control plane generally (see “Use Managed Kubernetes if You

Can” on page 48).

If you run your own master nodes, you are responsible for managing etcd clustering,

replication, and backup. Even with regular data snapshots, it still takes a certain

amount of time to retrieve and verify the snapshot, rebuild the cluster, and restore the

data. During this time your cluster will likely be unavailable or seriously degraded.

206 | Chapter 11: Security and Backups

Best Practice

Use a managed or turnkey service provider to run your master

nodes with etcd clustering and backups. If you run them yourself,

be very sure you know what you’re doing. Resilient etcd manage‐

ment is a specialist job, and the consequences of getting it wrong

can be serious.

Backing Up Resource State

Apart from etcd failures, there is also the question of saving the state of your individ‐

ual resources. If you delete the wrong Deployment, for example, how would you re-

create it?

Throughout this book we emphasize the value of the infrastructure as code paradigm,

and recommend that you always manage your Kubernetes resources declaratively, by

applying YAML manifests or Helm charts stored in version control.

In theory, then, to re-create the total state of your cluster workloads, you should be

able to check out the relevant version control repos, and apply all the resources in

them. In theory.

Backing Up Cluster State

In practice, not everything you have in version control is running in your cluster

right now. Some apps may have been taken out of service, or replaced by newer ver‐

sions. Some may not be ready to deploy.

We’ve recommended throughout this book that you should avoid making direct

changes to resources, and instead apply changes from the updated manifest files (see

“When Not to Use Imperative Commands” on page 117). However, people don’t

always follow good advice (the consultant’s lament throughout the ages).

In any case, it’s likely that during initial deployment and testing of apps, engineers

may be adjusting settings like replica count and node affinities on the fly, and only

storing them in version control once they’ve arrived at the right values.

Supposing your cluster were to be shut down completely, or have all its resources

deleted (hopefully an unlikely scenario, but a useful thought experiment). How would

you re-create it?

Even if you have an admirably well-designed and up-to-date cluster automation sys‐

tem that can redeploy everything to a fresh cluster, how do you know that the state of

this cluster matches the one that was lost?

One way to help ensure this is to make a snapshot of the running cluster, which you

can refer to later in case of problems.

Backups | 207

Large and Small Disasters

It’s not very likely that you’d lose the whole cluster: thousands of Kubernetes contrib‐

utors have worked hard to make sure that doesn’t happen.

What’s more likely is that you (or your newest team member) might delete a name‐

space by accident, shut down a Deployment without meaning to, or specify the wrong

set of labels to a kubectl delete command, removing more than you intended.

Whatever the cause, disasters do happen, so let’s look at a backup tool that can help

you avoid them.

Velero

Velero (formerly known as Ark) is a free and open source tool that can back up and

restore your cluster state and persistent data.

Velero runs in your cluster and connects to a cloud storage service of your choice (for

example, Amazon S3, or Azure Storage).

Follow the instructions to set up Velero for your platform.

Configuring Velero

Before you use Velero, you need to create a BackupStorageLocation object in your

Kubernetes cluster, telling it where to store backups (for example, an AWS S3 cloud

storage bucket). Here’s an example that configures Velero to back up to the demo-

backup bucket:

apiVersion: velero.io/v1

kind: BackupStorageLocation

metadata:

name: default

namespace: velero

spec:

provider: aws

objectStorage:

bucket: demo-backup

config:

region: us-east-1

You must have at least a storage location called default, though you can add others

with any names you like.

Velero can also back up the contents of your persistent volumes. To tell it where to

store them, you need to create a VolumeSnapshotLocation object:

apiVersion: velero.io/v1

kind: VolumeSnapshotLocation

metadata:

208 | Chapter 11: Security and Backups

 name: aws-default

namespace: velero

spec:

provider: aws

config:

region: us-east-1

Creating a Velero backup

When you create a backup using the velero backup command, the Velero server

queries the Kubernetes API to retrieve the resources matching the selector you pro‐

vided (by default, it backs up all resources). You can back up a set of namespaces, or

the whole cluster:

velero backup create demo-backup --include-namespaces demo

It will then export all these resources to a named file in your cloud storage bucket,

according to your configured BackupStorageLocation. The metadata and contents of

your persistent volumes will also be backed up to your configured VolumeSnapshot‐

Location.

Alternatively, you can back up everything in your cluster except specified namespaces

(for example, kube-system). You can also schedule automatic backups: for example,

you can have Velero back up your cluster nightly, or even hourly.

Each Velero backup is complete in itself, not an incremental backup. So, to restore a

backup, you only need the most recent backup file.

Restoring data

You can list your available backups using the velero backup get command:

velero backup get

NAME STATUS CREATED EXPIRES SELECTOR

demo-backup Completed 2018-07-14 10:54:20 +0100 BST 29d <none>

To see what’s in a particular backup, use velero backup download:

velero backup download demo-backup

Backup demo-backup has been successfully downloaded to

$PWD/demo-backup-data.tar.gz

The downloaded file is a tar.gz archive that you can unpack and inspect using stan‐

dard tools. If you only want the manifest for a specific resource, for example, you can

extract it from the backup file and restore it individually with kubectl apply -f.

To restore the whole backup, the velero restore command will start the process,

and Velero will re-create all the resources and volumes described in the specified

snapshot, skipping anything that already exists.

Backups | 209

If the resource does exist, but is different from the one in the backup, Velero will warn

you, but not overwrite the existing resource. So, for example, if you want to reset the

state of a running Deployment to the way it was in the most recent snapshot, delete

the running Deployment first, then restore it with Velero.

Alternatively, if you’re restoring a backup of a namespace, you can delete the name‐

space first, and then restore the backup.

Restore procedures and tests

You should write a detailed, step-by-step procedure describing how to restore data

from backups, and make sure all staff know where to find this document. When a

disaster happens, it’s usually at an inconvenient time, the key people aren’t available,

everyone’s in a panic, and your procedure should be so clear and precise that it can be

carried out by someone who isn’t familiar with Velero or even Kubernetes.

Each month, run a restore test by having a different team member execute the restore

procedure against a temporary cluster. This verifies both that your backups are good

and that the restore procedure is correct, and makes sure everyone is familiar with

how to do it.

Scheduling Velero backups

All backups should be automated, and Velero is no exception. You can schedule a reg‐

ular backup using the velero schedule create command:

velero schedule create demo-schedule --schedule="0 1 * * *" --include-namespaces

demo

Schedule "demo-schedule" created successfully.

The schedule argument specifies when to run the backup, in Unix cron format (see

“Cronjobs” on page 167). In the example, 0 1 * * * runs the backup at 01:00 every

day.

To see what backups you have scheduled, use velero schedule get:

velero schedule get

NAME STATUS CREATED SCHEDULE BACKUP TTL LAST BACKUP SELECTOR

demo-schedule Enabled 2018-07-14 * 10 * * * 720h0m0s 10h ago <none>

The BACKUP TTL field shows how long the backup will be kept around before being

automatically deleted (by default, 720 hours, equivalent to one month).

Other uses for Velero

While Velero is extremely useful for disaster recovery, you can also use it to migrate

resources and data from one cluster to another—a process sometimes called lift and

 shift.

210 | Chapter 11: Security and Backups

Making regular Velero backups can also help you understand how your Kubernetes

usage is changing over time; comparing the current state to the state a month ago, six

months ago, and a year ago, for example.

The snapshots can also be a useful source of audit information: for example, finding

out what was running in your cluster at a given date or time, and how and when the

cluster state changed.

Best Practice

Use Velero to back up your cluster state and persistent data regu‐

larly: at least nightly. Run a restore test at least monthly.

Monitoring Cluster Status

Monitoring cloud native applications is a big topic, which, as we’ll see in Chapter 15,

includes things like observability, metrics, logging, tracing, and traditional black-box

monitoring.

However, in this chapter we’ll be concerned only with monitoring the Kubernetes

cluster itself: the health of the cluster, the status of individual nodes, and the utiliza‐

tion of the cluster and the progress of its workloads.

kubectl

We introduced the invaluable kubectl command in Chapter 2, but we haven’t yet

exhausted its possibilities. As well as being a general administration tool for Kuber‐

netes resources, kubectl can also report useful information about the state of the

cluster components.

Control plane status

The kubectl get componentstatuses command (or kubectl get cs for short)

gives health information for the control plane components—the scheduler, the con‐

troller manager, and etcd:

kubectl get componentstatuses

NAME STATUS MESSAGE ERROR

controller-manager Healthy ok

scheduler Healthy ok

etcd-0 Healthy {"health": "true"}

If there were a serious problem with any of the control plane components, it would

soon become apparent anyway, but it’s still handy to be able to check and report on

them, as a sort of top-level health indicator for the cluster.

Monitoring Cluster Status | 211

If any of your control plane components is not in a Healthy state, it will need to be

fixed. This should never be the case with a managed Kubernetes service, but for self-

hosted clusters, you will have to take care of this yourself.

Node status

Another useful command is kubectl get nodes, which will list all the nodes in your

cluster, and report their status and Kubernetes version:

kubectl get nodes

NAME STATUS ROLES AGE VERSION

docker-for-desktop Ready master 5d v1.10.0

Since Docker Desktop clusters only have one node, this output isn’t particularly

informative; let’s look at the output from a small Google Kubernetes Engine cluster

for something more realistic:

kubectl get nodes

NAME STATUS ROLES AGE VERSION

gke-k8s-cluster-1-n1-standard-2-pool--8l6n Ready <none> 9d v1.10.2-gke.1

gke-k8s-cluster-1-n1-standard-2-pool--dwtv Ready <none> 19d v1.10.2-gke.1

gke-k8s-cluster-1-n1-standard-2-pool--67ch Ready <none> 20d v1.10.2-gke.1

...

Note that in the Docker Desktop get nodes output, the node role was shown as mas

ter. Naturally enough, since there’s only one node, that must be the master—and the

sole worker node, too.

In Google Kubernetes Engine, and some other managed Kubernetes services, you

don’t have direct access to the master nodes. Accordingly, kubectl get nodes lists

the worker nodes only (a role of <none> indicates a worker node).

If any of the nodes shows a status of NotReady, there is a problem. A reboot of the

node may fix it, but if not, it may need further debugging—or you could just delete it

and create a new node instead.

For detailed troubleshooting of bad nodes, you can use the kubectl describe node

command to get more information:

kubectl describe nodes/gke-k8s-cluster-1-n1-standard-2-pool--8l6n

This will show you, for example, the memory and CPU capacity of the node, and the

resources currently in use by Pods.

Workloads

You may recall from “Querying the Cluster with kubectl” on page 63 that you can also

use kubectl to list all Pods (or any resources) in your cluster. In that example, you

listed only the Pods in the default namespace, but the --all-namespaces flag will

allow you to see all Pods in the entire cluster:

212 | Chapter 11: Security and Backups

kubectl get pods --all-namespaces

NAMESPACE NAME READY STATUS RESTARTS AGE

cert-manager cert-manager-cert-manager-55 1/1 Running 1 10d

pa-test permissions-auditor-15281892 0/1 CrashLoopBackOff 1720 6d

freshtracks freshtracks-agent-779758f445 3/3 Running 5 20d

...

This can give you a helpful overview of what’s running in your cluster, and any Pod-

level problems. If any Pods are not in Running status, like the permissions-auditor

Pod in the example, it may need further investigation.

The READY column shows how many containers in the Pod are actually running, com‐

pared to the number configured. For example, the freshtracks-agent Pod shows

3/3: 3 out of 3 containers are running, so all is well.

On the other hand, permissions-auditor shows 0/1 containers ready: 0 containers

running, but 1 required. The reason is shown in the STATUS column: CrashLoopBack

Off. The container is failing to start properly.

When a container crashes, Kubernetes will keep trying to restart it at increasing inter‐

vals, starting at 10 seconds and doubling each time, up to 5 minutes. This strategy is

called exponential backoff, hence the CrashLoopBackOff status message.

CPU and Memory Utilization

Another useful view on your cluster is provided by the kubectl top command. For

nodes, it will show you the CPU and memory capacity of each node, and how much

of each is currently in use:

kubectl top nodes

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%

gke-k8s-cluster-1-n1-...8l6n 151m 7% 2783Mi 49%

gke-k8s-cluster-1-n1-...dwtv 155m 8% 3449Mi 61%

gke-k8s-cluster-1-n1-...67ch 580m 30% 3172Mi 56%

...

For Pods, it will show how much CPU and memory each specified Pod is using:

kubectl top pods -n kube-system

NAME CPU(cores) MEMORY(bytes)

event-exporter-v0.1.9-85bb4fd64d-2zjng 0m 27Mi

fluentd-gcp-scaler-7c5db745fc-h7ntr 10m 27Mi

fluentd-gcp-v3.0.0-5m627 11m 171Mi

...

Cloud Provider Console

If you’re using a managed Kubernetes service that is offered by your cloud provider,

then you will have access to a web-based console that can show you useful informa‐

tion about your cluster, its nodes, and workloads.

Monitoring Cluster Status | 213

For example, the Google Kubernetes Engine (GKE) console lists all your clusters,

details for each cluster, node pools, and so on (See Figure 11-1).

 Figure 11-1. The Google Kubernetes Engine console

You can also list workloads, services, and configuration details for the cluster. This is

much the same information as you can get from using the kubectl tool, but the GKE

console also allows you to perform administration tasks: create clusters, upgrade

nodes, and everything you’ll need to manage your cluster on a day-to-day basis.

The Azure Kubernetes Service, AWS Elastic Container Service for Kubernetes, and

other managed Kubernetes providers have similar facilities. It’s a good idea to make

yourself familiar with the management console for your particular Kubernetes ser‐

vice, as you’ll be using it a lot.

Kubernetes Dashboard

The Kubernetes Dashboard is a web-based user interface for Kubernetes clusters

(Figure 11-2). If you’re running your own Kubernetes cluster, rather than using a

managed service, you can run the Kubernetes Dashboard to get more or less the same

information as a managed service console would provide.

214 | Chapter 11: Security and Backups

 Figure 11-2. The Kubernetes Dashboard displays useful information about your cluster

As you’d expect, the Dashboard lets you see the status of your clusters, nodes, and

workloads, in much the same way as the kubectl tool, but with a graphical interface.

You can also create and destroy resources using the Dashboard.

Because the Dashboard exposes a great deal of information about your cluster and

workloads, it’s very important to secure it properly, and never expose it to the public

internet. The Dashboard lets you view the contents of ConfigMaps and Secrets, which

could contain credentials and crypto keys, so you need to control access to the Dash‐

board as tightly as you would to those secrets themselves.

In 2018, security firm RedLock found hundreds of Kubernetes Dashboard consoles

accessible over the internet without any password protection, including one owned

by Tesla, Inc. From these they were able to extract cloud security credentials and use

them to access further sensitive information.

Monitoring Cluster Status | 215

Best Practice

If you don’t have to run the Kubernetes Dashboard (for example, if

you already have a Kubernetes console provided by a managed ser‐

vice such as GKE), don’t run it. If you do run it, make sure it has

minimum privileges, and never expose it to the internet. Instead,

access it via kubectl proxy.

Weave Scope

Weave Scope is a great visualization and monitoring tool for your cluster, showing

you a real-time map of your nodes, containers, and processes. You can also see met‐

rics and metadata, and even start or stop containers using Scope.

kube-ops-view

Unlike the Kubernetes Dashboard, kube-ops-view doesn’t aim to be a general-

purpose cluster management tool. Instead, it gives you a visualization of what’s hap‐

pening in your cluster: what nodes there are, the CPU and memory utilization on

each, how many Pods each one is running, and the status of those Pods (Figure 11-3).

node-problem-detector

node-problem-detector is a Kubernetes add-on that can detect and report several

kinds of node-level issues: hardware problems, such as CPU or memory errors, file‐

system corruption, and wedged container runtimes.

Currently, node-problem-detector reports problems by sending events to the Kuber‐

netes API, and comes with a Go client library that you can use to integrate with your

own tools.

Although Kubernetes currently does not take any action in response to events from

the node-problem-detector, there may be further integration in the future that will

allow the scheduler to avoid running Pods on problem nodes, for example.

216 | Chapter 11: Security and Backups

 Figure 11-3. kube-ops-view gives an operational picture of your Kubernetes cluster

This is a great way to get a general overview of your cluster and what it’s doing. While

it’s not a replacement for the Dashboard or for specialist monitoring tools, it’s a good

complement to them.

Further Reading

Kubernetes security is a complex and specialized topic, and we’ve only scratched the

surface of it here. It really deserves a book of its own… and now there is one. Security

experts Liz Rice and Michael Hausenblas have written the excellent Kubernetes Secu‐

 rity (O’Reilly), covering secure cluster setup, container security, secrets management, and more. We recommend it highly.

Summary

Security is not a product or an end goal, but an ongoing process that requires knowl‐

edge, thought, and attention. Container security is no different, and the machinery to

help ensure it is there for you to use. If you’ve read and understood the information

Further Reading | 217

in this chapter, you know everything you need to know to configure your containers

securely in Kubernetes—but we’re sure you get the point that this should be the start,

not the end, of your security process.

The main things to keep in mind:

• Role-Based Access Control (RBAC) gives you fine-grained management of per‐

missions in Kubernetes. Make sure it’s enabled, and use RBAC roles to grant spe‐

cific users and apps only the minimum privileges they need to do their jobs.

• Containers aren’t magically exempt from security and malware problems. Use a

scanning tool to check any containers you run in production.

• Kubernetes is great and all, but you still need backups. Use Velero to back up

your data and the state of the cluster. It’s handy for moving things between clus‐

ters, too.

• kubectl is a powerful tool for inspecting and reporting on all aspects of your

cluster and its workloads. Get friendly with kubectl. You’ll be spending a lot of

time together.

• Use your Kubernetes provider’s web console and kube-ops-view for a graphical

overview of what’s going on. If you use the Kubernetes Dashboard, secure it as

tightly as you would your cloud credentials and crypto keys.

218 | Chapter 11: Security and Backups

CHAPTER 12

Deploying Kubernetes Applications

I lay on my back, surprised at how calm and focused I felt, strapped to four and a half

million pounds of explosives.

—Ron Garan, astronaut

In this chapter we’ll deal with the question of how to turn your manifest files into

running applications. We’ll learn how to build Helm charts for your applications, and

look at some alternative tools for manifest management: ksonnet, kustomize, kapitan,

and kompose.

Building Manifests with Helm

We saw in Chapter 2 how to deploy and manage applications with Kubernetes resour‐

ces created from YAML manifests. There’s nothing stopping you from managing all

your Kubernetes applications using just the raw YAML files in this way, but it’s not

ideal. Not only is it difficult to maintain these files, but there is also a problem of dis‐

tribution.

Suppose you want to make your application available to other people to run in their

own clusters. You can distribute the manifest files to them, but they will inevitably

need to customize some of the settings for their own environment.

To do this, they will have to make their own copy of the Kubernetes configs, find

where the various settings are defined (perhaps duplicated in several places), and edit

them.

Over time, they will need to maintain their own copies of the files, and when you

make updates available, they will have to pull and reconcile them manually with their

local changes.

219

This eventually starts to become painful. What we want is the ability to separate the

raw manifest files from the particular settings and variables that you or any user of

the application might need to adjust. Ideally we could then make these available in a

standard format, which anyone can download and install to a Kubernetes cluster.

Once we have this, then each application can expose not only configuration values,

but also any dependencies it has on other apps or services. An intelligent package

management tool could then install and run an application, along with all its depen‐

dencies, in a single command.

In “Helm: A Kubernetes Package Manager” on page 64, we introduced the Helm tool

and showed you how to use it to install public charts. Let’s look at Helm charts in a

little more detail now, and see how to create our own.

What’s Inside a Helm Chart?

In the demo repo, open up the hel o-helm/k8s directory to see what’s inside our Helm

chart.

Every Helm chart has a standard structure. First, the chart is contained in a directory

with the same name as the chart (demo in this case):

demo

├── Chart.yaml

├── production-values.yaml

├── staging-values.yaml

├── templates

│ ├── deployment.yaml

│ └── service.yaml

└── values.yaml

The Chart.yaml file

Next, it contains a file named Chart.yaml, which specifies the chart name and version:

name: demo

sources:

- https://github.com/cloudnativedevops/demo

version: 1.0.1

There are lots of optional fields you can supply in Chart.yaml, including a link to the

project source code, as here, but the only required information is the name and ver‐

sion.

The values.yaml file

There is also a file named values.yaml, which contains user-modifiable settings that

the chart author has exposed:

220 | Chapter 12: Deploying Kubernetes Applications

environment: development

container:

name: demo

port: 8888

image: cloudnatived/demo

tag: hello

replicas: 1

This looks a bit like a Kubernetes YAML manifest, but there’s an important difference.

The values.yaml file is completely free-form YAML, with no predefined schema: it’s

up to you to choose what variables are defined, their names, and their values.

There don’t have to be any variables at all in your Helm chart, but if there are, you can

put them in values.yaml and then refer to them elsewhere in the chart.

Ignore the production-values.yaml and staging-values.yaml files for the moment; we’ll

explain what they’re for shortly.

Helm Templates

So where are these variables referenced? If you look in the templates subdirectory,

you’ll see a couple of familiar-looking files:

ls k8s/demo/templates

deployment.yaml service.yaml

These are just the same as the Deployment and Service manifest files from the previ‐

ous example, except that now they are templates: instead of referring to things like the

container name directly, they contain a placeholder that Helm will replace with the

actual value from values.yaml.

Here’s what the template Deployment looks like:

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: {{ .Values.container.name }}-{{ .Values.environment }}

spec:

replicas: {{ .Values.replicas }}

selector:

matchLabels:

app: {{ .Values.container.name }}

template:

metadata:

labels:

app: {{ .Values.container.name }}

environment: {{ .Values.environment }}

spec:

containers:

- name: {{ .Values.container.name }}

image: {{ .Values.container.image }}:{{ .Values.container.tag }}

ports:

Building Manifests with Helm | 221

- containerPort: {{ .Values.container.port }}

env:

- name: ENVIRONMENT

value: {{ .Values.environment }}

The curly braces indicate a place where Helm should substitute the

value of a variable, but they’re actually part of Go template syntax.

(Yes, Go is everywhere. Kubernetes and Helm themselves are writ‐

ten in Go, so it’s no surprise that Helm charts use Go templates.)

Interpolating Variables

There are several variables referenced in this template:

...

metadata:

name: {{ .Values.container.name }}-{{ .Values.environment }}

This whole section of text, including the curly braces, will be interpolated (that is,

replaced) with the values of container.name and environment, taken from val‐

 ues.yaml. The generated result will look like this:

...

metadata:

name: demo-development

This is powerful, because values like container.name are referenced more than once

in the template. Naturally, it’s referenced in the Service template, too:

apiVersion: v1

kind: Service

metadata:

name: {{ .Values.container.name }}-service-{{ .Values.environment }}

labels:

app: {{ .Values.container.name }}

spec:

ports:

- port: {{ .Values.container.port }}

protocol: TCP

targetPort: {{ .Values.container.port }}

selector:

app: {{ .Values.container.name }}

type: ClusterIP

You can see how many times .Values.container.name is referenced, for example.

Even in a simple chart like this, you need to repeat the same bits of information many

times. Using Helm variables eliminates this duplication. All you need to do to change

the container name, for example, is to edit values.yaml and reinstall the chart, and the

change will be propagated throughout all the templates.

222 | Chapter 12: Deploying Kubernetes Applications

The Go template format is very powerful, and you can use it to do much more than

simple variable substitutions: it supports loops, expressions, conditionals, and even

calling functions. Helm charts can use these features to generate fairly complex con‐

figuration from input values, unlike the simple substitutions in our example.

You can read more about how to write Helm templates in the Helm documentation.

Quoting Values in Templates

You can use the quote function in Helm to automatically quote values in your tem‐

plates:

name: {{.Values.MyName | quote }}

Only string values should be quoted; don’t use the quote function with numeric val‐

ues like port numbers.

Specifying Dependencies

What if your chart relies on other charts? For example, if your app uses Redis, the

Helm chart for your app might need to specify the redis chart as a dependency.

You can do this using the requirements.yaml file:

dependencies:

- name: redis

version: 1.2.3

- name: nginx

version: 3.2.1

Now run the helm dependency update command, and Helm will download those

charts, ready to install along with your own application.

Deploying Helm Charts

Let’s look at what’s involved in actually using a Helm chart to deploy an application.

One of the most valuable features of Helm is the ability to specify, change, update,

and override configuration settings. In this section we’ll see how that works.

Setting Variables

We’ve seen that the author of a Helm chart can put all the user-modifiable settings in

 values.yaml, along with the default values for those settings. So how does the user of a

chart change or override those settings to suit her local site or environment? The

helm install command lets you specify additional values files on the command line,

which will override any defaults in values.yaml. Let’s look at an example.

Deploying Helm Charts | 223

Creating a environment variable

Suppose you want to deploy a version of the application in a staging environment.

For the purposes of our example, it doesn’t really matter what that means in practice,

but let’s say the application knows whether it’s in staging or production based on the

value of an environment variable named ENVIRONMENT, and changes its behavior

accordingly. How does that environment variable get created?

Looking again at the deployment.yaml template, this environment variable is supplied

to the container using this code:

...

env:

- name: ENVIRONMENT

value: {{ .Values.environment }}

The value of environment comes from values.yaml, as you’d expect:

environment: development

...

So installing the chart with the default values will result in the container’s ENVIRON

MENT variable containing development. Suppose you want to change that to staging.

You could edit the values.yaml file, as we’ve seen, but a better way is to create an addi‐

tional YAML file containing a value for just that one variable:

environment: staging

You’ll find this value in the file k8s/demo/staging-values.yaml, which isn’t part of the

Helm chart—we’ve just supplied it to save you a little typing.

Specifying Values in a Helm Release

To specify an extra values file with the helm install command, use the --values

flag, like this:

helm install --name demo-staging --values=./k8s/demo/staging-values.yaml

./k8s/demo ...

This will create a new release, with a new name (demo-staging), and the running

container’s ENVIRONMENT variable will be set to staging instead of development. The

variables listed in the extra values file we specified with --values are combined with

those in the default values file (values.yaml). In this case, there’s only one variable

(environment) and the value from staging-values.yaml overrides that from the default

values file.

You can also specify values to helm install directly on the command line, using the

--set flag, but this isn’t in the spirit of infrastructure as code. Instead, to customize

the settings for a Helm chart, create a YAML file that overrides the default, like the

224 | Chapter 12: Deploying Kubernetes Applications

 staging-values.yaml file in the example, and apply it on the command line using the --

values flag.

While you’ll naturally want to set configuration values this way for installing your

own Helm charts, you can do it with public charts too. To see the list of values a chart

makes available for you to set, run helm inspect values with a chart name:

helm inspect values stable/prometheus

Updating an App with Helm

You’ve learned how to install a Helm chart with the default values, and with a custom

values file, but what about changing some values for an application that’s already run‐

ning?

The helm upgrade command will do this for you. Suppose you want to change the

number of replicas (the number of copies of the Pod that Kubernetes should run) for

the demo application. By default it’s 1, as you can see from the values.yaml file:

replicas: 1

You know how to override this using a custom values file, so edit the staging-

 values.yaml file to add a suitable setting:

environment: staging

replicas: 2

Run the following command to apply your changes to the existing demo-staging

Deployment, rather than creating a new one:

helm upgrade demo-staging --values=./k8s/demo/staging-values.yaml ./k8s/demo

Release "demo-staging" has been upgraded. Happy Helming!

You can run helm upgrade as many times as you like to update a running Deploy‐

ment, and Helm will cheerfully oblige.

Rolling Back to Previous Versions

If you decide you don’t like the version you’ve just deployed, or there turns out to be a

problem, it’s easy to roll back to a previous version, using the helm rollback com‐

mand, and specifying the number of a previous release (as shown in helm history

output):

helm rollback demo-staging 1

Rollback was a success! Happy Helming!

In fact, the rollback doesn’t have to be to a previous release; let’s say you roll back to

revision 1, and then decide you want to roll forward to revision 2. If you run helm

rollback demo-staging 2, that’s exactly what will happen.

Deploying Helm Charts | 225

Automatic rollback with helm-monitor

You can even have Helm roll back a release automatically based on metrics (see Chap‐

ter 16). For example, suppose you’re running Helm in a continuous deployment pipe‐

line (see Chapter 14). You might want to automatically undo the release if the number

of errors recorded by your monitoring system exceeds a certain amount.

To do this, you can use the helm-monitor plug-in, which can query a Prometheus

server (see “Prometheus” on page 298) for any metrics expression you like, and trig‐

ger a rollback if the query succeeds. helm-monitor will watch the metric for five

minutes and roll the release back if it detects a problem during that time. For more

about helm-monitor, see this blog post.

Creating a Helm Chart Repo

So far we’ve used Helm to install charts from a local directory, or from the stable

repo. You don’t need your own chart repo to use Helm, as it’s common to store an

application’s Helm chart in the application’s own repo.

But if you do want to maintain your own Helm chart repo, it’s very straightforward.

The charts need to be available over HTTP, and there’s a variety of ways you can do

this: put them in a cloud storage bucket, use GitHub Pages, or an existing web server

if you have one.

Once all your charts are collected together under a single directory, run helm repo

index on that directly to create the index.yaml file that contains the repo metadata.

Your chart repo is ready to use! See the Helm documentation for more details on

managing chart repos.

To install charts from your repo, you’ll first of all need to add the repo to Helm’s list:

helm repo add myrepo http://myrepo.example.com

helm install myrepo/myapp

Managing Helm Chart Secrets with Sops

We saw in “Kubernetes Secrets” on page 187 how to store secret data in Kubernetes,

and how to pass it to applications via environment variables or mounted files. If you

have more than one or two secrets to manage, you may find it easier to create a single

file containing all the secrets, rather than individual files each containing one secret.

And if you’re using Helm to deploy your app, you can make that file a values file, and

encrypt it with Sops (see “Encrypting Secrets with Sops” on page 194).

226 | Chapter 12: Deploying Kubernetes Applications

We’ve built an example for you to try in the demo repo, in the hel o-sops directory:

cd hello-sops

tree

.

├── k8s

│ └── demo

│ ├── Chart.yaml

│ ├── production-secrets.yaml

│ ├── production-values.yaml

│ ├── staging-secrets.yaml

│ ├── staging-values.yaml

│ ├── templates

│ │ ├── deployment.yaml

│ │ └── secrets.yaml

│ └── values.yaml

└── temp.yaml

3 directories, 9 files

This is a similar Helm chart layout to our earlier example (see “What’s Inside a Helm

Chart?” on page 220). Here, we’ve defined a Deployment and a Secret. But in this

example, we have added a twist to make it easier to manage multiple secrets for dif‐

ferent environments.

Let’s see the secrets our application will need:

cat k8s/demo/production-secrets.yaml

secret_one: ENC[AES256_GCM,data:ekH3xIdCFiS4j1I2ja8=,iv:C95KilXL...1g==,type:str]

secret_two: ENC[AES256_GCM,data:0Xcmm1cdv3TbfM3mIkA=,iv:PQOcI9vX...XQ==,type:str]

...

Here we have used Sops to encrypt the values of multiple secrets for our application

to use.

Now take a look at the Kubernetes secrets.yaml file:

cat k8s/demo/templates/secrets.yaml

apiVersion: v1

kind: Secret

metadata:

name: {{ .Values.container.name }}-secrets

type: Opaque

data:

{{ $environment := .Values.environment }}

app_secrets.yaml: {{ .Files.Get (nospace (cat $environment "-secrets.yaml"))

| b64enc }}

On the last two lines, we’ve added some Go templating into the Helm chart to read

secrets from either the production-secrets.yaml or the staging-secrets.yaml files,

depending on which environment is set in the values.yaml file.

Deploying Helm Charts | 227

The end result will be a single Kubernetes Secret manifest named app_secrets.yaml,

containing al of the key-value pairs defined in either secret file. This Secret will get

mounted in the Deployment as a single file for the application to use.

We’ve also added ...| b64enc to the end of the last line. This is another handy short‐

cut using Helm’s Go templating to automatically convert the secret data from plain

text to base64, which, by default, is what Kubernetes expects secrets to be (see

“base64” on page 189).

We need to first temporarily decrypt the files using Sops, and then apply the changes

to a Kubernetes cluster. Here is a command pipeline to deploy a staging version of the

demo application, with its staging secrets:

sops -d k8s/demo/staging-secrets.yaml > temp-staging-secrets.yaml && \

helm upgrade --install staging-demo --values staging-values.yaml \

--values temp-staging-secrets.yaml ./k8s/demo && rm temp-staging-secrets.yaml

Here’s how that works:

1. Sops decrypts the staging-secrets file and writes the decrypted output to temp-

 staging-secrets.

2. Helm installs the demo chart using values from staging-values and temp-staging-

 secrets.

3. The temp-staging-secrets file is deleted.

Because all this happens in one step, we don’t leave a file containing plain-text secrets

lying around for the wrong people to find.

Managing Multiple Charts with Helmfile

When we introduced Helm in “Helm: A Kubernetes Package Manager” on page 64,

we showed you how to deploy the demo application Helm chart to a Kubernetes clus‐

ter. As useful as Helm is, it only operates on one chart at a time. How do you know

what applications should be running in your cluster, together with the custom set‐

tings you applied when you installed them with Helm?

There’s a neat tool called Helmfile that can help you do this. Much as Helm makes it

possible for you to deploy a single application using templating and variables, Helm‐

file enables you to deploy everything that should be installed on your cluster, with a

single command.

What’s in a Helmfile?

There’s an example of how to use Helmfile in the demo repository. In the hello-helmfile

folder, you’ll find helmfile.yaml:

228 | Chapter 12: Deploying Kubernetes Applications

repositories:

- name: stable

url: https://kubernetes-charts.storage.googleapis.com/

releases:

- name: demo

namespace: demo

chart: ../hello-helm/k8s/demo

values:

- "../hello-helm/k8s/demo/production-values.yaml"

- name: kube-state-metrics

namespace: kube-state-metrics

chart: stable/kube-state-metrics

- name: prometheus

namespace: prometheus

chart: stable/prometheus

set:

- name: rbac.create

value: true

The repositories section defines the Helm chart repositories we are going to refer‐

ence. In this case, the only repository is stable, the official stable Kubernetes chart

repository. If you’re using your own Helm chart repo (see “Creating a Helm Chart

Repo” on page 226), add it here.

Next, we define a set of releases: applications we would like to deploy to the cluster.

Each release specifies some of the following metadata:

• name of the Helm chart to deploy

• namespace to deploy it to

• chart is the URL or path to the chart itself

• values gives the path to a values.yaml file to use with the Deployment

• set sets any extra values in addition to those in the values file

We’ve defined three releases here: the demo app, plus Prometheus (see “Prometheus”

on page 298) and kube-state-metrics (see “Kubernetes Metrics” on page 283).

Chart Metadata

Note that we’ve specified a relative path to the demo chart and values files:

- name: demo

namespace: demo

chart: ../hello-helm/k8s/demo

values:

- "../hello-helm/k8s/demo/production-values.yaml"

Managing Multiple Charts with Helmfile | 229

So your charts don’t need to be in a chart repository for Helmfile to manage them;

you could keep them all in the same source code repo, for example.

For the prometheus chart, we’ve specified simply stable/prometheus. Since this isn’t

a filesystem path, Helmfile knows to look for the chart in the stable repo, which we

defined earlier in the repositories section:

- name: stable

url: https://kubernetes-charts.storage.googleapis.com/

All charts have various default values set in their respective values.yaml files. In the

set: sections of Helmfile, you can specify any values that you would like to overwrite

when installing the application.

In this example, for the prometheus release, we changed the default value for

rbac.create from false to true:

- name: prometheus

namespace: prometheus

chart: stable/prometheus

set:

- name: rbac.create

value: true

Applying the Helmfile

The helmfile.yaml, then, specifies everything that should be running in the cluster (or

at least, a subset of it) in a declarative way, just like Kubernetes manifests. When you

apply this declarative manifest, Helmfile will bring the cluster into line with your

specification.

To do this, run:

helmfile sync

exec: helm repo add stable https://kubernetes-charts.storage.googleapis.com/

"stable" has been added to your repositories

exec: helm repo update

Hang tight while we grab the latest from your chart repositories...

...Skip local chart repository

...Successfully got an update from the "cloudnativedevops" chart repository

...Successfully got an update from the "stable" chart repository

Update Complete. ⎈ Happy Helming!⎈

exec: helm dependency update .../demo/hello-helm/k8s/demo

...

It’s just as though you had run helm install / helm upgrade in turn for each of the

Helm charts you’ve defined.

You might like to run helm sync automatically as part of your continuous deploy‐

ment pipeline, for example (see Chapter 14). Instead of manually running helm

230 | Chapter 12: Deploying Kubernetes Applications

install to add a new application to the cluster, you could just edit your Helmfile,

check it into source control, and wait for the automation to roll out your changes.

Use a single source of truth. Don’t mix deploying individual charts

manually with Helm, and declaratively managing all your charts

across the cluster with Helmfile. Pick one or the other. If you apply

a Helmfile, and then use Helm to deploy or modify applications out

of band, the Helmfile will no longer be the single source of truth

for your cluster. This is bound to lead to problems, so if you use

Helmfile, make all your deployments using only Helmfile.

If Helmfile isn’t quite to your liking, there are a few other tools that do more or less

the same thing:

• Landscaper

• Helmsman

As with any new tool, we recommend reading through the docs, comparing the vari‐

ous options, trying them out, and then deciding which suits you.

Advanced Manifest Management Tools

While Helm is a great tool, and widely used, it does have a few limitations. Writing

and editing Helm templates isn’t a lot of fun. Kubernetes YAML files are complicated,

verbose, and repetitive. Therefore, so are Helm templates.

Several new tools are under development that try to address these problems, and

make it easier to work with Kubernetes manifests: either by describing them in a

more powerful language than YAML, such as Jsonnet, or by grouping the YAML files

into basic patterns and customizing them with overlay files.

ksonnet

Sometimes declarative YAML isn’t enough, especially for large and complex deploy‐

ments where you need to be able to use computation and logic. For example, you

might want to set the number of replicas dynamically based on the size of the cluster.

For this, you need a real programming language:

Advanced Manifest Management Tools | 231

Kubernetes YAML files were never meant to be authored by humans. ksonnet aims to

provide a single tool that makes it easy to configure Kubernetes applications across dif‐

ferent clusters and environments.

—Joe Beda (Heptio)

ksonnet lets you author Kubernetes manifests using a language called Jsonnet, which

is an extended version of JSON (which is a declarative data format equivalent to

YAML, and Kubernetes can understand JSON format manifests too). Jsonnet adds

important capabilities to JSON—variables, loops, arithmetic, conditional statements,

error handling, and so on:

local env = std.extVar("__ksonnet/environments");

local params = std.extVar("__ksonnet/params").components.demo;

[

{

"apiVersion": "v1",

"kind": "Service",

"metadata": {

"name": params.name

},

"spec": {

"ports": [

{

"port": params.servicePort,

"targetPort": params.containerPort

...

Most importantly, ksonnet introduces the idea of prototypes: prewritten combinations

of Kubernetes resources with which you can stamp out commonly used manifest pat‐

terns.

For example, one of ksonnet’s built-in prototypes is deployed-service, which gener‐

ates a Deployment for a given container, and a Service to route traffic to it. This is a

good starting point for most applications you’ll want to run in Kubernetes.

There’s a library of public prototypes you can use, and you can also define your own

site-specific ones, so that you don’t have to duplicate a lot of manifest code across all

your applications and services.

Kapitan

Kapitan is another Jsonnet-based manifest tool, focused on sharing configuration val‐

ues across multiple applications or even clusters. Kapitan has a hierarchical database

of config values (called the inventory) that lets you re-use manifest patterns by plug‐

ging in different values, depending on the environment or application:

local kube = import "lib/kube.libjsonnet";

local kap = import "lib/kapitan.libjsonnet";

local inventory = kap.inventory();

232 | Chapter 12: Deploying Kubernetes Applications

local p = inventory.parameters;

{

"00_namespace": kube.Namespace(p.namespace),

"10_serviceaccount": kube.ServiceAccount("default")

}

kustomize

kustomize is another manifest management tool that uses plain YAML, instead of

templates or an alternate language like Jsonnet. You start with a base YAML manifest,

and use overlays to patch the manifest for different environments or configurations.

The kustomize command-line tool will generate the final manifests from the base

files plus the overlays:

namePrefix: staging-

commonLabels:

environment: staging

org: acmeCorporation

commonAnnotations:

note: Hello, I am staging!

bases:

- ../../base

patchesStrategicMerge:

- map.yaml

EOF

This means deploying manifests can be as simple as running:

kustomize build /myApp/overlays/stagingq | kubectl apply -f -

If templates or Jsonnet don’t appeal to you, and you want the ability to work with

plain Kubernetes manifests, this tool is worth checking out.

kompose

If you’ve been running production services in Docker containers, but not using

Kubernetes, you may be familiar with Docker Compose.

Compose lets you define and deploy sets of containers that work together: for exam‐

ple, a web server, a backend application, and a database such as Redis. A single

 docker-compose.yml file could be used to define how these containers talk to each

other.

kompose is a tool to convert docker-compose.yml files into Kubernetes manifests, to

help you migrate from Docker Compose to Kubernetes, without having to write your

own Kubernetes manifests or Helm charts from scratch.

Advanced Manifest Management Tools | 233

Ansible

You may already be familiar with Ansible, a popular infrastructure automation tool.

It’s not Kubernetes-specific, but it can manage many different kinds of resources,

using extension modules, much like Puppet (see “Puppet Kubernetes Module” on

page 46).

As well as installing and configuring Kubernetes clusters, Ansible can manage Kuber‐

netes resources like Deployments and Services directly, using the k8s module.

Like Helm, Ansible can template Kubernetes manifests using its standard templating

language (Jinja), and it has a more sophisticated notion of variable lookup, using a

hierarchical system. For example, you can set common values for a group of applica‐

tions, or a deployment environment such as staging.

If you’re already using Ansible in your organization, it’s definitely worth evaluating

whether you should use it for managing Kubernetes resources too. If your infrastruc‐

ture is based solely on Kubernetes, then Ansible may be more power than you need,

but for mixed infrastructures it can be very helpful to use just one tool to manage

everything:

kube_resource_configmaps:

my-resource-env: "{{ lookup('template', template_dir +

'/my-resource-env.j2') }}"

kube_resource_manifest_files: "{{ lookup('fileglob', template_dir +

'/*manifest.yml') }}"

- hosts: "{{ application }}-{{ env }}-runner"

roles:

- kube-resource

A talk by Ansible expert Will Thames shows some of the possibilities of managing

Kubernetes with Ansible.

kubeval

Unlike the other tools we’ve discussed in this section, kubeval isn’t for generating or

templating Kubernetes manifests, but for validating them.

Each version of Kubernetes has a different schema for its YAML or JSON manifests,

and it’s important to be able to check automatically that your manifests match the

schema. For example, kubeval will check that you’ve specified all the required fields

for a particular object, and that the values are of the right type.

kubectl also validates manifests when they’re applied, and will give you an error

when you try to apply an invalid manifest. But it’s also very useful to be able to

validate them beforehand. kubeval doesn’t need access to a cluster, and it can also val‐

idate against any version of Kubernetes.

234 | Chapter 12: Deploying Kubernetes Applications

It’s a good idea to add kubeval to your continuous deployment pipeline, so that mani‐

fests are automatically validated whenever you make changes to them. You can also

use kubeval to test, for example, whether your manifests need any adjustments to

work on the latest version of Kubernetes before you actually upgrade.

Summary

While you can deploy applications to Kubernetes using just raw YAML manifests, it’s

inconvenient. Helm is a powerful tool that can help with this, provided you under‐

stand how to get the best out of it.

There are lots of new tools being developed right now that will make Kubernetes

Deployment much easier in the future. Some of their features may be incorporated

into Helm, too. Either way, it’s important to be familiar with the basics of using Helm:

• A chart is a Helm package specification, including metadata about the package,

some configuration values for it, and template Kubernetes objects that reference

those values.

• Installing a chart creates a Helm release. Each time you install an instance of a

chart, a new release is created. When you update a release with different config

values, Helm increments the release revision number.

• To customize a Helm chart for your own requirements, create a custom values

file overriding just the settings you care about, and add it to the helm install or

helm upgrade command line.

• You can use a variable (environment, for example) to select different sets of val‐

ues or secrets depending on the deployment environment: staging, production,

and so on.

• With Helmfile, you can declaratively specify a set of Helm charts and values to be

applied to your cluster, and install or update all of them with a single command.

• Helm can be used along with Sops for handling secret configuration in your

charts. It can also use a function to automatically base64-encode your secrets,

which Kubernetes expects them to be.

• Helm is not the only available tool for managing Kubernetes manifests. Ksonnet

and Kapitan use Jsonnet, a different templating language. kustomize takes a dif‐

ferent approach and rather than interpolating variables, it just uses YAML over‐

lays to configure manifests.

• A quick way to test and validate manifests is to use kubeval, which will check for

valid syntax and common errors in manifests.

Summary | 235

CHAPTER 13

Development Workflow

Surfing is such an amazing concept. You’re taking on Nature with a little stick and say‐

ing, I’m gonna ride you! And a lot of times Nature says, No you’re not! and crashes you

to the bottom.

—Jolene Blalock

In this chapter we’ll expand on the discussion in Chapter 12, turning our attention to

the whole application life cycle, from local development to deploying updates to a

Kubernetes cluster, including the tricky topic of database migrations. We’ll cover

some tools that help you develop, test, and deploy your applications: Skaffold, Draft,

Telepresence, and Knative. Once you’re ready to deploy your application to the clus‐

ter, you’ll learn about more complex deployments with Helm using hooks.

Development Tools

In Chapter 12 we looked at some tools to help you write, build, and deploy your

Kubernetes resource manifests. That’s fine as far as it goes, but often when you’re

developing an application that runs in Kubernetes, you want to be able to try things

out and see changes instantly, without going through a full build-push-deploy-update

loop.

Skaffold

Skaffold is an open source tool from Google designed to provide a fast local develop‐

ment workflow. It automatically rebuilds your containers as you develop locally, and

deploys those changes to either a local or remote cluster.

You define your desired workflow in a skaffold.yaml file in your repository and run

the skaffold command-line tool to start the pipeline. As you make changes to files in

your local directory, Skaffold wakes up, builds a new container with the changes, and

237

then deploys it for you automatically, saving you a round trip to the container regis‐

try.

Draft

Draft is an open source tool maintained by the Azure team at Microsoft. Like Skaf‐

fold, it can use Helm to automatically deploy updates to a cluster when code changes.

Draft also introduces the concept of Draft Packs: prewritten Dockerfiles and Helm

charts for whatever language your app is using. Currently there are packs available

for .NET, Go, Node, Erlang, Clojure, C#, PHP, Java, Python, Rust, Swift, and Ruby.

If you are just starting out with a new application, and you don’t yet have a Dockerfile

or Helm chart, Draft may be the perfect tool for you to get up and running quickly.

When you run draft init && draft create, Draft will examine the files in your

local application directory and try to determine which language your code uses. It

will then create a Dockerfile for your specific language, as well as a Helm chart.

To apply these, run the draft up command. Draft will build a local Docker container

using the Dockerfile it created and deploy it to your Kubernetes cluster.

Telepresence

Telepresence takes a slightly different approach from Skaffold and Draft. You don’t

need a local Kubernetes cluster; a Telepresence Pod runs in your real cluster as a

placeholder for your application. Traffic for the application Pod is then intercepted

and routed to the container running on your local machine.

This enables the developer to make her local machine participate in the remote clus‐

ter. As she makes changes to application code, they will be reflected in the live cluster,

without a new container having to be deployed to it.

Knative

While the other tools we’ve looked at are focused on speeding up the local develop‐

ment loop, Knative is more ambitious. It aims to provide a standard mechanism for

deploying all kinds of workloads to Kubernetes: not just containerized applications,

but serverless-style functions too.

Knative integrates with both Kubernetes and Istio (see “Istio” on page 174) to provide

a complete application/function deployment platform, including setting up a build

process, automated deployment, and an eventing mechanism that standardizes the

way applications use messaging and queueing systems (for example, Pub/Sub, Kafka,

or RabbitMQ).

The Knative project is at an early stage, but it’s one to watch.

238 | Chapter 13: Development Workflow

Deployment Strategies

If you were upgrading a running application by hand, without Kubernetes, one way

to do it would be to just shut down the application, install the new version, and

restart it. But that means downtime.

If you had multiple replicas, a better way would be to upgrade each replica in turn, so

that there’s no interruption in service: a so-called zero-downtime deployment.

Not all applications need zero downtime; internal services that consume message

queues, for example, are idempotent, so they can be upgraded all at once. This means

the upgrade happens faster, but for user-facing applications, we are usually more con‐

cerned with avoiding downtime than achieving quick upgrades.

In Kubernetes, you can choose whichever of these strategies is most appropriate. Roll

ingUpdate is the zero-downtime, Pod-by-Pod option, while Recreate is the fast, all-

Pods-at-once option. There are also some fields that you can tweak to get the exact

behavior that you need for your application.

In Kubernetes, an application’s deployment strategy is defined in the Deployment

manifest. The default is RollingUpdate, so if you don’t specify a strategy, this is what

you’ll get. To change the strategy to Recreate, set it like this:

apiVersion: extensions/v1beta1

kind: Deployment

spec:

replicas: 1

strategy:

type: Recreate

Now let’s look more closely at these deployment strategies and see how they work.

Rolling Updates

In a rolling update, Pods are upgraded one at a time, until all replicas have been

replaced with the new version.

For example, let’s imagine an application with three replicas, each running v1. The

developer starts an upgrade to v2 with a kubectl apply... or helm upgrade...

command. What happens?

First, one of the three v1 Pods will be terminated. Kubernetes will flag it as unready,

and stop sending it traffic. A new v2 Pod will be spun up to take its place. Meanwhile,

the remaining v1 Pods continue receiving incoming requests. While we’re waiting for

the first v2 Pod to become ready, we’re down to two Pods, but we’re still serving users.

When the v2 Pod becomes ready, Kubernetes will start sending it user traffic, along‐

side the other two v1 Pods. Now we’re back to our full complement of three Pods.

Deployment Strategies | 239

This process will continue, Pod by Pod, until all of the v1 Pods have been replaced

with v2 Pods. While there are times when fewer Pods than usual are available to han‐

dle traffic, the application as a whole is never actually down. That’s zero-downtime

deployment.

During a rolling update, both old and new versions of your appli‐

cation will be in service at the same time. While this usually isn’t a

problem, you may need to take steps to ensure that this is safe; if

your changes involve a database migration, for example (see “Han‐

dling Migrations with Helm” on page 243), a normal rolling update

won’t be possible.

If your Pods can sometimes crash or fail after a short time in a ready state, use the

minReadySeconds field to have the rollout wait until each Pod is stable (see “minRea‐

dySeconds” on page 75).

Recreate

In Recreate mode, all running replicas are terminated at once, and then new ones are

created.

For applications that do not directly handle requests, this should be acceptable. One

advantage of Recreate is that it avoids the situation where two different versions of

the application are running simultaneously (see “Rolling Updates” on page 239).

maxSurge and maxUnavailable

As a rolling update progresses, sometimes you will have more Pods running than the

nominal replicas value, and sometimes less. Two important settings govern this

behavior: maxSurge and maxUnavailable:

• maxSurge sets the maximum number of excess Pods. For example, if you have 10

replicas and you set maxSurge to 30%, then no more than 13 Pods will be allowed

to run at any one time.

• maxUnavailable sets the maximum number of unavailable Pods. With a nominal

10 replicas and maxUnavailable of 20%, Kubernetes will never let the number of

available Pods drop below 8.

These can be set as either a whole number, or as a percentage:

apiVersion: extensions/v1beta1

kind: Deployment

spec:

replicas: 10

strategy:

240 | Chapter 13: Development Workflow

 type: RollingUpdate

rollingUpdate:

maxSurge: 20%

maxUnavailable: 3

Usually, the default values for both (25%, or 1, depending on your Kubernetes ver‐

sion) are fine, and you won’t need to adjust these. In some situations, you may need

to tweak them to make sure your application can maintain acceptable capacity during

an upgrade. At very large scale, you may find that running at 75% availability is not

sufficient, and you’ll need to reduce maxUnavailable slightly.

The bigger the value of maxSurge, the faster your rollout, but the more extra load it

places on your cluster’s resources. Large values of maxUnavailable also speed up roll‐

outs, at the expense of your application’s capacity.

On the other hand, small values of maxSurge and maxUnavailable reduce the impact

on your cluster and your users, but can make your rollouts take much longer. Only

you can decide what the right trade-off is for your application.

Blue/Green Deployments

In a blue/green deployment, rather than killing and replacing Pods one at a time, a

whole new Deployment is created, and a new separate stack of Pods running v2 is

launched beside the existing v1 Deployment.

One advantage of this is that you don’t have to deal with both old and new versions of

the application processing requests simultaneously. On the other hand, your cluster

will need to be big enough to run twice the number of replicas required for your

application, which can be expensive, and means a lot of unused capacity sitting

around most of the time (unless you scale the cluster up and down as needed).

Recall from “Service Resources” on page 60 that Kubernetes uses labels to decide

which Pods should receive traffic from a Service. One way to implement a blue/green

deployment is to set different labels on your old and new Pods (see “Labels” on page

153).

With a small tweak to the Service definition for our example application, you can

send traffic to only Pods labeled deployment: blue:

apiVersion: v1

kind: Service

metadata:

name: demo

spec:

ports:

- port: 8080

protocol: TCP

targetPort: 8080

selector:

Deployment Strategies | 241

 app: demo

deployment: blue

type: ClusterIP

When deploying a new version, you can label it deployment: green. It won’t receive

any traffic, even when it’s fully up and running, because the Service only sends traffic

to blue Pods. You can test it and make sure it’s ready before making the cutover.

To switch over to the new Deployment, edit the Service to change the selector to

deployment: green. Now the new green Pods will start receiving traffic, and once all

the old blue Pods are idle, you can shut them down.

Rainbow Deployments

In some rare cases, particularly when Pods have very long-lived connections (web‐

sockets, for example), just blue and green may not be enough. You may need to main‐

tain three or more versions of your application in flight at the same time.

This is sometimes referred to as a rainbow deployment. Every time you deploy an

update, you get a new color set of Pods. As connections finally drain from your oldest

set of Pods, they can be shut down.

Brandon Dimcheff describes a rainbow deployment example in detail.

Canary Deployments

The advantage of blue/green (or rainbow) deployments is that if you decide you don’t

like the new version, or it isn’t behaving correctly, you can simply switch back to the

old version, which is still running. However, it is expensive because you need the

capacity to run both versions simultaneously.

One alternative approach that avoids this problem is a canary deployment. Like a can‐

ary in a coal mine, a small handful of new Pods are exposed to the dangerous world

of production to see what happens to them. If they survive, the rollout can continue

to completion. If there is a problem, the blast radius is strictly limited.

Just as with blue/green deployments, you can do this using labels (see “Labels” on

page 153). There is a detailed example of running a canary deployment in the Kuber‐

netes documentation.

A more sophisticated way to do this is to use Istio (see “Istio” on page 174), which

allows you to randomly route a variable proportion of traffic to one or more service

versions. This also makes it easy to do things like A/B testing.

242 | Chapter 13: Development Workflow

Handling Migrations with Helm

Stateless applications are easy to deploy and upgrade, but when a database is

involved, the situation can be more complicated. Changes to the schema of a database

usually require a migration task to be run at a specific point in the rollout. For exam‐

ple, with Rails apps, you need to run rake db:migrate before starting the new Pods.

On Kubernetes, you can use a Job resource to do this (see “Jobs” on page 166). You

could script this using kubectl commands as part of your upgrade process, or if you

are using Helm, then you can use a built-in feature called hooks.

Helm Hooks

Helm hooks allow you to control the order in which things happen during a deploy‐

ment. They also let you bail out of an upgrade if things go wrong.

Here is an example of a database migration Job for a Rails application deployed with

Helm:

apiVersion: batch/v1

kind: Job

metadata:

name: {{ .Values.appName }}-db-migrate

annotations:

"helm.sh/hook": pre-upgrade

"helm.sh/hook-delete-policy": hook-succeeded

spec:

activeDeadlineSeconds: 60

template:

name: {{ .Values.appName }}-db-migrate

spec:

restartPolicy: Never

containers:

- name: {{ .Values.appName }}-migration-job

image: {{ .Values.image.repository }}:{{ .Values.image.tag }}

command:

- bundle

- exec

- rails

- db:migrate

The helm.sh/hook properties are defined in the annotations section:

annotations:

"helm.sh/hook": pre-upgrade

"helm.sh/hook-delete-policy": hook-succeeded

The pre-upgrade setting tells Helm to apply this Job manifest before doing an

upgrade. The Job will run the standard Rails migration command.

Handling Migrations with Helm | 243

The "helm.sh/hook-delete-policy": hook-succeeded tells Helm to delete the Job

if it completes successfully (that is, exits with status 0).

Handling Failed Hooks

If the Job returns a nonzero exit code, this is a sign that there was an error and the

migration did not complete successfully. Helm will leave the Job in place in its failed

state, so that you can debug what went wrong.

If this happens, the release process will stop, and the application will not be upgraded.

Running kubectl get pods -a will show you the failed Pod, allowing you to inspect

the logs and see what happened.

Once the issue has been resolved, you can delete the failed job (kubectl delete job

<job-name>) and then try the upgrade again.

Other Hooks

Hooks have phases other than just pre-upgrade. You can use a hook at any of the fol‐

lowing stages of a release:

• pre-install executes after templates are rendered, but before any resources are

created.

• post-install executes after all resources are loaded.

• pre-delete executes on a deletion request before any resources are deleted.

• post-delete executes on a deletion request after all of the release’s resources

have been deleted.

• pre-upgrade executes on an upgrade request after templates are rendered, but

before any resources are loaded (for example, before a kubectl apply opera‐

tion).

• post-upgrade executes on an upgrade after all resources have been upgraded.

• pre-rollback executes on a rollback request after templates are rendered, but

before any resources have been rolled back.

• post-rollback executes on a rollback request after all resources have been modi‐

fied.

Chaining Hooks

Helm hooks also come with the ability to chain them together in a specific order,

using the helm.sh/hook-weight property. The hooks will be run in order from lowest

244 | Chapter 13: Development Workflow

to highest, so a Job with a hook-weight of 0 will run before one with a hook-weight

of 1:

apiVersion: batch/v1

kind: Job

metadata:

name: {{ .Values.appName }}-stage-0

annotations:

"helm.sh/hook": pre-upgrade

"helm.sh/hook-delete-policy": hook-succeeded

"helm.sh/hook-weight": "0

You can find everything you need to know about hooks in the Helm documentation.

Summary

Developing Kubernetes applications can be tedious if you have to build, push, and

deploy a container image to test every little code change. Tools like Draft, Skaffold,

and Telepresence make this loop much faster, speeding up development.

In particular, rolling out changes to production is far easier with Kubernetes than

with traditional servers, provided you understand the basic concepts, and how you

can customize them to suit your application:

• The default RollingUpdate deployment strategy in Kubernetes upgrades a few

Pods at a time, waiting for each replacement Pod to become ready before shutting

down the old one.

• Rolling updates avoid downtime, at the expense of making the rollout take

longer. It also means that both old and new versions of your application will be

running simultaneously during the rollout period.

• You can adjust the maxSurge and maxUnavailable fields to fine-tune rolling

updates. Depending on the versions of the Kubernetes API you are using, the

defaults may or may not be appropriate for your situation.

• The Recreate strategy just blows away all the old Pods and starts up new ones all

at once. This is fast, but results in downtime, so it’s not suitable for user-facing

applications.

• In a blue/green deployment, all the new Pods are started up and made ready

without receiving any user traffic. Then all traffic is switched over to the new

Pods in one go, before retiring the old Pods.

• Rainbow deployments are similar to blue/green deployments, but with more

than two versions in service simultaneously.

Summary | 245

• You can implement blue/green and rainbow deployments in Kubernetes by

adjusting the labels on your Pods and changing the selector on the front-end Ser‐

vice to direct traffic to the appropriate set of Pods.

• Helm hooks provide a way to apply certain Kubernetes resources (usually Jobs) at

a particular stage of a deployment, for example, to run a database migration.

Hooks can define the order in which resources should be applied during a

deployment, and cause the deployment to halt if something does not succeed.

246 | Chapter 13: Development Workflow

CHAPTER 14

Continuous Deployment in Kubernetes

Tao does not do, but nothing is not done.

—Lao Tzu

In this chapter we’ll look at a key DevOps principle— continuous deployment—and see

how we can achieve this in a cloud native, Kubernetes-based environment. We outline

some of the options for setting up continuous deployment (CD) pipelines to work

with Kubernetes, and show you a fully worked example using Google’s Cloud Build.

What Is Continuous Deployment?

 Continuous deployment (CD) is the automatic deployment of successful builds to pro‐

duction. Like the test suite, deployment should also be managed centrally and auto‐

mated. Developers should be able to deploy new versions by either pushing a button,

or merging a merge request, or pushing a Git release tag.

CD is often associated with continuous integration (CI): the automatic integration and

testing of developers’ changes against the mainline branch. The idea is that if you’re

making changes on a branch that would break the build when merged to the main‐

line, continuous integration will let you know that right away, rather than waiting

until you finish your branch and do the final merge. The combination of continuous

integration and deployment is often referred to as CI/CD.

The machinery of continuous deployment is often referred to as a pipeline: a series of

automated actions that take code from the developer’s workstation to production, via

a sequence of test and acceptance stages.

247

A typical pipeline for containerized applications might look like the following:

1. A developer pushes her code changes to Git.

2. The build system automatically builds the current version of the code and runs

tests.

3. If all tests pass, the container image will be published into the central container

registry.

4. The newly built container is deployed automatically to a staging environment.

5. The staging environment undergoes some automated acceptance tests.

6. The verified container image is deployed to production.

A key point is that the artifact that is tested and deployed through your various envi‐

ronments is not the source code, but the container. There are many ways for errors to

creep in between source code and a running binary, and testing the container instead

of the code can help catch a lot of these.

The great benefit of CD is no surprises in production; nothing gets deployed unless the

exact binary image has already been successfully tested in staging.

You can see a detailed example of a CD pipeline like this in “A CD Pipeline with

Cloud Build” on page 251.

Which CD Tool Should I Use?

As usual, the problem is not a shortage of available tools, but the sheer range of

choices. There are several CD tools designed specifically for cloud native applications,

and long-established traditional build tools such as Jenkins now have plug-ins to

allow them to work with Kubernetes and containers.

As a result, if you already use CD, you probably don’t need to switch to a whole new

system. If you are migrating existing applications to Kubernetes, you can almost cer‐

tainly do this with a few changes to your existing build system.

If you haven’t yet adopted a CD system, then we’ll outline some of your options in

this section.

Jenkins

Jenkins is a very widely adopted CD tool and has been around for years. It has plu‐

gins for just about everything you could want to use in a CD workflow, including

Docker, kubectl, and Helm.

There is also a newer dedicated side project for running Jenkins in your Kubernetes

cluster, JenkinsX.

248 | Chapter 14: Continuous Deployment in Kubernetes

Drone

Drone is a newer CD tool built with, and for, containers. It is simple and lightweight,

with the pipeline defined by a single YAML file. Since each build step consists of run‐

ning a container, it means that anything you can run in a container you can run on

Drone.1

Google Cloud Build

If you run your infrastructure on Google Cloud Platform, then Google Cloud Build

should be your first choice for CD. Like Drone, Cloud Build runs containers as the

various build steps and the configuration YAML lives in your code repository.

You can configure Cloud Build to watch your Git repository (GitHub integration is

available). When a preset condition is triggered, such as pushing to a certain branch

or tag, Cloud Build will run your specified pipeline, building a new container, run‐

ning your test suite, publishing the image, and perhaps deploying the new version to

Kubernetes.

For a complete working example of a CD pipeline in Cloud Build, see “A CD Pipeline

with Cloud Build” on page 251.

Concourse

Concourse is an open source CD tool written in Go. It also adopts the declarative

pipeline approach, much like Drone and Cloud Build, using a YAML file to define

and execute build steps. Concourse already has an official stable Helm chart to deploy

it on Kubernetes, making it easy to get a containerized pipeline up and running

quickly.

Spinnaker

Spinnaker is very powerful and flexible, but can be a little daunting at first glance.

Developed by Netflix, it excels at large-scale and complex deployments, such as blue/

green deployments (see “Blue/Green Deployments” on page 241). There is a free

ebook about Spinnaker that should give you some idea whether Spinnaker fits your

needs.

1 The New York Times dev team wrote a useful blog post on deploying to GKE with Drone.

Which CD Tool Should I Use? | 249

GitLab CI

GitLab is a popular alternative to GitHub for hosting Git repositories. It also comes

with a powerful built-in CD tool, GitLab CI, that can be used for testing and deploy‐

ing your code.

If you are already using GitLab, it makes sense to look at GitLab CI for implementing

your continuous deployment pipeline.

Codefresh

Codefresh is a managed CD service for testing and deploying applications to Kuber‐

netes. One interesting feature is the ability to deploy temporary staging environments

for every feature branch.

Using containers, CodeFresh can build, test, and deploy on-demand environments,

and then you can configure how you would like to deploy your containers into vari‐

ous environments in your clusters.

Azure Pipelines

Microsoft’s Azure DevOps service (formerly known as Visual Studio Team Services)

includes a continuous delivery pipeline facility, called Azure Pipelines, similar to

Google Cloud Build.

CD Components

If you already have a well-established CD system, and just need to add a component

for building containers, or for deploying containers once they have been built, here

are some options that you may be able to integrate with your existing system.

Docker Hub

One of the easiest ways to automatically build new containers on code changes is to

use Docker Hub. If you have a Docker Hub account (see “Container Registries” on

page 28), you can create a trigger against a GitHub or BitBucket repository which will

automatically build and publish new containers to Docker Hub.

Gitkube

Gitkube is a self-hosted tool that runs in your Kubernetes cluster, watches a Git repo,

and automatically builds and pushes a new container when one of your triggers is

executed. It’s very simple and portable, and easy to set up.

250 | Chapter 14: Continuous Deployment in Kubernetes

Flux

The pattern of triggering a CD pipeline (or other automated processes) on Git

branches or tags is sometimes called GitOps. Flux extends this idea by watching for changes to a container registry, instead of a Git repo. When a new container is

pushed, Flux will deploy it automatically to your Kubernetes cluster.

Keel

Keel, like Flux, is concerned with deploying new container images from a registry. It

can be configured to respond to webhooks, send and receive Slack messages, wait for

approvals before deploying, and do other useful workflows.

A CD Pipeline with Cloud Build

Now that you know the general principles of CD, and have learned about some of the

tooling options, let’s look at a complete, end-to-end example of a CD pipeline.

The idea is not that you should necessarily use exactly the same tools and configura‐

tion as we have here; rather, we hope you’ll get a sense of how everything fits together,

and can adapt some parts of this example to suit your own environment.

In this example we’ll be using Google Cloud Platform (GCP), Google Kubernetes

Engine clusters (GKE), and Google Cloud Build, but we don’t rely on any specific fea‐

tures of those products. You can replicate this kind of pipeline using whatever tools

you prefer.

If you’d like to work through this example using your own GCP account, please bear

in mind that it uses some chargeable resources. It won’t cost a fortune, but you’ll want

to delete and clean up any cloud resources afterwards to make sure you don’t get bil‐

led more than necessary.

Setting Up Google Cloud and GKE

If you’re signing up to Google Cloud for the first time, you’ll be eligible for a fairly

substantial free credit, which should enable you to run Kubernetes clusters and other

resources for quite a while without being charged. You can find out more and create

an account at the Google Cloud Platform site.

Once you are signed up and logged in to your own Google Cloud project, follow

these instructions to create a GKE cluster.

Next, initialize Helm in the cluster (see “Helm: A Kubernetes Package Manager” on

page 64).

Now, to set up the pipeline, we’ll walk you through the following steps:

A CD Pipeline with Cloud Build | 251

1. Fork the demo repository into your own personal GitHub account.

2. Create a Cloud Build trigger for building and testing on a push to any Git branch.

3. Create a trigger for deploying to GKE based on Git tags.

Forking the Demo Repository

If you have a GitHub account, use the GitHub interface to fork the demo repo.

If you’re not using GitHub, make a copy of our repo and push it to your own Git

server.

Introducing Cloud Build

In Cloud Build, like Drone and many other modern CD platforms, each step of your

build pipeline consists of running a container. The build steps are defined using a

YAML file that lives in your Git repo.

When the pipeline is triggered by a commit, Cloud Build makes a copy of the repo at

that specific commit SHA, and executes each pipeline step in order.

Inside the demo repository there is a folder called hel o-cloudbuild. In that folder

you’ll find the cloudbuild.yaml file that defines our Cloud Build pipeline.

Let’s look at each of the build steps in this file in turn.

Building the Test Container

Here’s the first step:

- id: build-test-image

dir: hello-cloudbuild

name: gcr.io/cloud-builders/docker

entrypoint: bash

args:

- -c

- |

docker image build --target build --tag demo:test .

Like all Cloud Build steps, this consists of a set of YAML key-value pairs:

• id gives a human-friendly label to the build step.

• dir specifies the subdirectory of the Git repo to work in.

• name identifies the container to run for this step.

• entrypoint specifies the command to run in the container, if not the default.

252 | Chapter 14: Continuous Deployment in Kubernetes

• args gives the necessary arguments to the entrypoint command.

And that’s it!

The purpose of this step is to build a container that we can use to run our applica‐

tion’s tests. Since we are using a multi-stage build (see “Understanding Dockerfiles”

on page 25), we want to build only the first stage for now. So we run this command:

docker image build --target build --tag demo:test .

The --target build argument tells Docker to only build the part in the Dockerfile

under FROM golang:1.11-alpine AS build and stop before moving on to the next

step.

This means that the resulting container will still have Go installed, along with any of

the packages or files used in the step labeled ...AS build. This will essentially be a

throwaway container, only used for running the test suite of our application, and then

it will be discarded.

Running the Tests

Here’s the next step:

- id: run-tests

dir: hello-cloudbuild

name: gcr.io/cloud-builders/docker

entrypoint: bash

args:

- -c

- |

docker container run demo:test go test

Since we tagged our throwaway container as demo:test, that temporary image will

still be available for the rest of this build inside Cloud Build, and this step will run go

test against that container. If any tests fail, the build will exit and report the failure.

Otherwise, it will continue to the next step.

Building the Application Container

Here we run docker build again, but without the --target flag, so that we run the

whole multistage build, ending up with the final application container:

- id: build-app

dir: hello-cloudbuild

name: gcr.io/cloud-builders/docker

entrypoint: bash

args:

- -c

- |

docker build --tag gcr.io/${PROJECT_ID}/demo:${COMMIT_SHA} .

A CD Pipeline with Cloud Build | 253

Validating the Kubernetes Manifests

At this point we have a container that has passed tests and is ready to run in Kuber‐

netes. To actually deploy it, though, we are using a Helm chart, and in this step we’ll

run helm template to generate the Kubernetes manifests, and then pipe them

through the kubeval tool to check them (see “kubeval” on page 234):

- id: kubeval

dir: hello-cloudbuild

name: cloudnatived/helm-cloudbuilder

entrypoint: bash

args:

- -c

- |

helm template ./k8s/demo/ | kubeval

Note that we’re using our own Helm container image here (cloud

natived/helm-cloudbuilder). Oddly for a tool aimed specifically

at deploying containers, Helm does not have an official container

image. You can use ours for the example, but in production you’ll

probably want to build your own.

Publishing the Image

Assuming the pipeline completes successfully, Cloud Build will automatically publish

the resulting container image to the registry. To specify which images you want to

publish, list them under images in the Cloud Build file:

images:

- gcr.io/${PROJECT_ID}/demo:${COMMIT_SHA}

Git SHA Tags

What’s with the COMMIT_SHA tag? In Git, every commit has a unique identifier, called a

SHA (named for the Secure Hash Algorithm that generates it). A SHA is a long string

of hex digits, like 5ba6bfd64a31eb4013ccaba27d95cddd15d50ba3.

If you use this SHA to tag your image, it provides a link to the Git commit that gener‐

ated it, which is also a snapshot of the exact code that is in the container. The nice

thing about tagging build artifacts with the originating Git SHA is that you can build

and test lots of feature branches simultaneously, without any conflicts.

Now that you’ve seen how the pipeline works, let’s turn our attention to the build trig‐

gers that will actually execute the pipeline, based on our specified conditions.

254 | Chapter 14: Continuous Deployment in Kubernetes

Creating the First Build Trigger

A Cloud Build trigger specifies a Git repo to watch, a condition on which to activate

(such as pushing to a particular branch or tag), and a pipeline file to execute.

Go ahead and create a new trigger now. Log in to your Google Cloud project and

browse to https://console.cloud.google.com/cloud-build/triggers?pli=1.

Click the Add Trigger button to make a new build trigger, and select GitHub as the

source repository.

You’ll be asked to grant permission for Google Cloud to access your GitHub repo.

Select YOUR_GITHUB_USERNAME/demo and Google Cloud will link to your repository.

Next, configure the trigger as shown in Figure 14-1:

You can name the trigger whatever you like. Under the branch section, keep the

default .*; this will match any branch.

Change the Build configuration section from Dockerfile to cloudbuild.yaml.

The cloudbuild.yaml Location field tells Cloud Build where to find our pipeline file

containing the build steps. In this case, it will be hel o-cloudbuild/cloudbuild.yaml.

Click the Create trigger button when you are done. You’re now ready to test the trig‐

ger and see what happens!

Testing the Trigger

Go ahead and make a change to your copy of demo repository. For example, let’s cre‐

ate a new branch and modify the greeting from Hello to Hola:

cd hello-cloudbuild

git checkout -b hola

Switched to a new branch hola

Edit both main.go and main_test.go, replace Hello with Hola, or whatever greeting

you like, and save both files.

Run the tests yourself to make sure everything works:

go test

PASS

ok github.com/cloudnativedevops/demo/hello-cloudbuild 0.011s

Now commit the changes and push them to your forked repository. If all is well, this

should trigger Cloud Build to start a new build. Browse to https://

 console.cloud.google.com/cloud-build/builds.

A CD Pipeline with Cloud Build | 255

 Figure 14-1. Create Trigger

You’ll see the list of recent builds in your project. You should see one at the top of the

list for the current change you just pushed. It may be still running, or it may have

already finished.

Hopefully you will see a green check indicating that all steps passed. If not, check the

log output in the build and see what failed.

256 | Chapter 14: Continuous Deployment in Kubernetes

Assuming it passed, a container should have been published into your private Google

Container Registry tagged with the Git commit SHA of your change.

Deploying from a CD Pipeline

So now you can trigger a build with a Git push, run tests, and publish the final con‐

tainer to the registry. At this stage, you’re ready to deploy that container to Kuber‐

netes.

For this example we will imagine there are two environments, one for production,

and one for staging, and we will deploy them into separate namespaces: staging-

demo and production-demo.

We will configure Cloud Build to deploy to staging when it sees a Git tag containing

staging, and to production when it sees production. This requires a new pipeline, in

a separate YAML file, cloudbuild-deploy.yaml. Here are the steps.

Getting credentials for the Kubernetes cluster

To deploy to Kubernetes with Helm, we’ll need to configure kubectl to talk to our

cluster:

- id: get-kube-config

dir: hello-cloudbuild

name: gcr.io/cloud-builders/kubectl

env:

- CLOUDSDK_CORE_PROJECT=${_CLOUDSDK_CORE_PROJECT}

- CLOUDSDK_COMPUTE_ZONE=${_CLOUDSDK_COMPUTE_ZONE}

- CLOUDSDK_CONTAINER_CLUSTER=${_CLOUDSDK_CONTAINER_CLUSTER}

- KUBECONFIG=/workspace/.kube/config

args:

- cluster-info

In this step we reference some variables like ${_CLOUDSDK_CORE_PROJECT}. We can

define these variables either in the build trigger, as we will in this example, or in the

pipeline file itself, under the substitutions heading:

substitutions:

_CLOUDSDK_CORE_PROJECT=demo_project

User-defined substitutions must begin with an underscore character (_) and use only

uppercase letters and numbers. Cloud Build also gives us some predefined substitu‐

tions, such as $PROJECT_ID and $COMMIT_SHA (full list here).

You will also need to authorize the Cloud Build service account to have permission to

make changes to your Kubernetes Engine cluster. Under the IAM section in GCP,

grant the service account for Cloud Build the Kubernetes Engine Developer IAM role

in your project.

A CD Pipeline with Cloud Build | 257

Adding an environment tag

In this step we’ll tag the container with the same Git tag that triggered the deploy:

- id: update-deploy-tag

dir: hello-cloudbuild

name: gcr.io/cloud-builders/gcloud

args:

- container

- images

- add-tag

- gcr.io/${PROJECT_ID}/demo:${COMMIT_SHA}

- gcr.io/${PROJECT_ID}/demo:${TAG_NAME}

Deploying to the cluster

Here we run Helm to actually upgrade the application in the cluster, using the Kuber‐

netes credentials that we acquired earlier:

- id: deploy

dir: hello-cloudbuild

name: cloudnatived/helm-cloudbuilder

env:

- KUBECONFIG=/workspace/.kube/config

args:

- helm

- upgrade

- --install

- ${TAG_NAME}-demo

- --namespace=${TAG_NAME}-demo

- --values

- k8s/demo/${TAG_NAME}-values.yaml

- --set

- container.image=gcr.io/${PROJECT_ID}/demo

- --set

- container.tag=${COMMIT_SHA}

- ./k8s/demo

We are passing a few additional flags to the helm upgrade command:

namespace

The namespace where the application should be deployed

values

The Helm values file to use for this environment

set container.image

Sets the container name to deploy

set container.tag

Deploys the image with this specific tag (the originating Git SHA)

258 | Chapter 14: Continuous Deployment in Kubernetes

Creating a Deploy Trigger

Now let’s add triggers for deploying to staging and production.

Create a new trigger in Cloud Build as you did in “Creating the First Build Trigger”

on page 255, but this time configure it to trigger a build when a tag is pushed instead

of a branch.

Also, instead of using the hel o-cloudbuild/cloudbuild.yaml file, for this build we will

use hel o-cloudbuild/cloudbuild-deploy.yaml.

In the Substitution variables section, we’ll set values specific to the staging build:

• _CLOUDSDK_CORE_PROJECT needs to be set to the value of your Google Cloud

project ID where your GKE cluster is running.

• _CLOUDSDK_COMPUTE_ZONE should match the availability zone of your cluster (or

region, if it’s a regional cluster).

• _CLOUDSDK_CONTAINER_CLUSTER is the actual name of your GKE cluster.

These variables mean we can use the same YAML file for deploying both staging and

production, even if we wanted to run these environments in separate clusters, or even

separate GCP projects.

Once you have created the trigger for the staging tag, go ahead and try it out by

pushing a staging tag to the repo:

git tag -f staging

git push -f origin refs/tags/staging

Total 0 (delta 0), reused 0 (delta 0)

To github.com:domingusj/demo.git

* [new tag] staging -> staging

As before, you can watch the build progress.

If all goes as planned, Cloud Build should successfully authenticate to your GKE clus‐

ter and deploy the staging version of your application into the staging-demo name‐

space.

You can verify this by checking the GKE dashboard (or use helm status).

Finally, follow the same steps to create a trigger that deploys to production on a push

to the production tag.

Optimizing Your Build Pipeline

If you’re using a container-based CD pipeline tool like Cloud Build, it’s important to

make each step’s container as small as possible (see “Minimal Container Images” on

A CD Pipeline with Cloud Build | 259

page 26). When you’re running tens or hundreds of builds a day, the increased pull

time of obese containers really adds up.

For example, if you’re using Sops to decrypt secrets (see “Encrypting Secrets with

Sops” on page 194), the official mozilla/sops container image is about 800 MiB. By

building your own custom image with a multi-stage build, you can reduce the image

size to around 20 MiB. Since this image will be pulled on every build, making it 40

times smaller is worth it.

A version of Sops with a modified Dockerfile to build a minimal container image is

available.

Adapting the Example Pipeline

We hope this example demonstrates the key concepts of a CD pipeline. If you’re using

Cloud Build, you can use the example code as a starting point for setting up your own

pipeline. If you’re using other tools, it should be relatively easy to adapt the steps

we’ve shown here to work in your own environment.

Summary

Setting up a continuous deployment pipeline for your applications allows you to

deploy software consistently, reliably, and quickly. Ideally developers should be able

to push code to the source control repository and all of the build, test, and deploy

phases will happen automatically in a centralized pipeline.

Because there are so many options for CD software and techniques, we can’t give you

a single recipe that’ll work for everybody. Instead, we’ve aimed to show you how and

why CD is beneficial, and give you a few important things to think about when you

come to implement it in your own organization:

• Deciding which CD tools to use is an important process when building a new

pipeline. All of the tools we mention throughout this book could likely be incor‐

porated into almost any existing CD tool.

• Jenkins, GitLab, Drone, Cloud Build, and Spinnaker are just a few of the popular

CD tools that work well with Kubernetes. There are also many newer tools such

as Gitkube, Flux, and Keel that are specifically built for automating deployments

to Kubernetes clusters.

• Defining the build pipeline steps with code allows you to track and modify these

steps alongside application code.

• Containers enable developers to promote build artifacts up through environ‐

ments, such as testing, staging, and eventually production, ideally without having

to rebuild a new container.

260 | Chapter 14: Continuous Deployment in Kubernetes

• Our example pipeline using Cloud Build should be easily adaptable for other

tools and types of applications. The overall build, test, and deploy steps are

largely the same in any CD pipeline, regardless of the tools used or type of soft‐

ware.

Summary | 261

CHAPTER 15

Observability and Monitoring

Nothing is ever completely right aboard a ship.

—William Langewiesche, The Outlaw Sea

In this chapter we’ll consider the question of observability and monitoring for cloud

native applications. What is observability? How does it relate to monitoring? How do

you do monitoring, logging, metrics, and tracing in Kubernetes?

What Is Observability?

 Observability may not be a familiar term to you, though it’s becoming increasingly

popular as a way to express the larger world beyond traditional monitoring. Let’s

tackle monitoring first before we see how observability extends it.

What Is Monitoring?

Is your website working right now? Go check; we’ll wait. The most basic way to know

whether all your applications and services are working as they should is to look at

them yourself. But when we talk about monitoring in a DevOps context, we mostly

mean automated monitoring.

Automated monitoring is checking the availability or behavior of a website or service,

in some programmatic way, usually on a regular schedule, and usually with some

automated way of alerting human engineers if there’s a problem. But what defines a

problem?

Black-Box Monitoring

Let’s take the simple case of a static website; say, the blog that accompanies this book.

263

If it’s not working at all, it just won’t respond, or you’ll see an error message in the

browser (we hope not, but nobody’s perfect). So the simplest possible monitoring

check for this site is to fetch the home page and check the HTTP status code (200

indicates a successful request). You could do this with a command-line HTTP client

such as httpie or curl. If the exit status from the client is nonzero, there was a prob‐

lem fetching the website.

But suppose something went wrong with the web server configuration, and although

the server is working and responding with HTTP 200 OK status, it is actually serving

a blank page (or some sort of default or welcome page, or maybe the wrong site alto‐

gether). Our simple-minded monitoring check won’t complain at all, because the

HTTP request succeeds. However, the site is actually down for users: they can’t read

our fascinating and informative blog posts.

A more sophisticated monitoring check might look for some specific text on the page,

such as Cloud Native DevOps. This would catch the problem of a misconfigured, but

working, web server.

Beyond static pages

You can imagine that more complex websites might need more complex monitoring.

For example, if the site had a facility for users to log in, the monitoring check might

also try to log in with a precreated user account and alert if the login fails. Or if the

site had a search function, the check might fill in a text field with some search text,

simulate clicking the search button, and verify that the results contain some expected

text.

For simple websites, a yes/no answer to the question “Is it working?” may be suffi‐

cient. For cloud native applications, which tend to be more complex distributed sys‐

tems, the question may turn into multiple questions:

• Is my application available everywhere in the world? Or only in some regions?

• How long does it take to load for most of my users?

• What about users who may have slow download speeds?

• Are all of the features of my website working as intended?

• Are certain features working slowly or not at all, and how many users are affec‐

ted?

• If it relies on a third-party service, what happens to my application when that

external service is faulty or unavailable?

• What happens when my cloud provider has an outage?

It starts to become clear that in the world of monitoring cloud native distributed sys‐

tems, not very much is clear at all.

264 | Chapter 15: Observability and Monitoring

The limits of black-box monitoring

However, no matter how complicated these checks get, they all fall into the same cate‐

gory of monitoring: black-box monitoring. Black-box checks, as the name suggests,

observe only the external behavior of a system, without any attempt to observe what’s

going on inside it.

Until a few years ago, black-box monitoring, as performed by popular tools such as

Nagios, Icinga, Zabbix, Sensu, and Check_MK, was pretty much the state of the art.

To be sure, having any kind of automated monitoring of your systems is a huge

improvement on having none. But there are a few limitations of black-box checks:

• They can only detect predictable failures (for example, a website not responding).

• They only check the behavior of the parts of the system that are exposed to the

outside.

• They are passive and reactive; they only tell you about a problem after it’s hap‐

pened.

• They can answer the question “What’s broken?”, but not the more important

question “Why?”

To answer the why? question, we need to move beyond black-box monitoring.

There’s a further issue with this kind of up/ down test; what does up even mean?

What Does “Up” Mean?

In operations we’re used to measuring the resilience and availability of our applica‐

tions in uptime, usually measured as a percentage. For example, an application with

99% uptime was unavailable for no more than 1% of the relevant time period. 99.9%

uptime, referred to as three nines, translates to about nine hours downtime a year,

which would be a good figure for the average web application. Four nines (99.99%) is

less than an hour’s downtime per year, and five nines (99.999%) is about five minutes.

So, the more nines the better, you might think. But looking at things this way misses

an important point:

Nines don’t matter if users aren’t happy.

—Charity Majors

Nines don’t matter if users aren’t happy

As the saying goes, what gets measured gets maximized. So you’d better be very care‐

ful what you measure. If your service isn’t working for users, it doesn’t matter what

your internal metrics say: the service is down. There are lots of ways a service can be

making users unhappy, even if it’s nominally up.

What Is Observability? | 265

To take an obvious one, what if your website takes 10 seconds to load? It might work

fine after that, but if it’s too slow to respond, it might as well be down completely.

Users will just go elsewhere.

Traditional black-box monitoring might attempt to deal with this problem by defin‐

ing a load time of, say, five seconds as up, and anything over that is considered down

and an alert generated. But what if users are experiencing all sorts of different load

times, from 2 seconds to 10 seconds? With a hard threshold like this, you could con‐

sider the service down for some users, but up for others. What if load times are fine

for users in North America, but unusable from Europe or Asia?

Cloud native applications are never up

While you could go on refining more complex rules and thresholds to enable us to

give an up/ down answer about the status of the service, the truth is that the question

is irredeemably flawed. Distributed systems like cloud native applications are never

 up; they exist in a constant state of partially degraded service.

This is an example of a class of problems called gray failures. Gray failures are, by definition, hard to detect, especially from a single point of view or with a single observa‐

tion.

So while black-box monitoring may be a good place to start your observability jour‐

ney, it’s important to recognize that you shouldn’t stop there. Let’s see if we can do

better.

Logging

Most applications produce logs of some kind. Logs are a series of records, usually with

some kind of timestamps to indicate when records were written, and in what order.

For example, a web server records each request in its logs, including information

such as:

• The URI requested

• The IP address of the client

• The HTTP status of the response

If the application encounters an error, it usually logs this fact, along with some infor‐

mation that may or may not be helpful for operators to figure out what caused the

problem.

Often, logs from a wide range of applications and services will be aggregated into a

central database (Elasticsearch, for example), where they can be queried and graphed

to help with troubleshooting. Tools like Logstash and Kibana, or hosted services such

266 | Chapter 15: Observability and Monitoring

as Splunk and Loggly, are designed to help you gather and analyze large volumes of

log data.

The limits of logging

Logs can be useful, but they have their limitations too. The decision about what to log

or not to log is taken by the programmer at the time the application is written. There‐

fore, like black-box checks, logs can only answer questions or detect problems that

can be predicted in advance.

It can also be hard to extract information from logs, because every application writes

logs in a different format, and operators often need to write customized parsers for

each type of log record to turn it into usable numerical or event data.

Because logs have to record enough information to diagnose any conceivable kind of

problem, they usually have a poor signal-to-noise ratio. If you log everything, it’s dif‐

ficult and time-consuming to wade through hundreds of pages of logs to find the one

error message you need. If you log only occasional errors, it’s hard to know what nor‐

 mal looks like.

Logs are hard to scale

Logs also don’t scale very well with traffic. If every user request generates a log line

that has to be sent to the aggregator, you can end up using a lot of network bandwidth

(which is thus unavailable to serve users), and your log aggregator can become a bot‐

tleneck.

Many hosted logging providers also charge by the volume of logs you generate, which

is understandable, but unfortunate: it incentivizes you financially to log less informa‐

tion, and to have fewer users and serve less traffic!

The same applies to self-hosted logging solutions: the more data you store, the more

hardware, storage, and network resources you have to pay for, and the more engi‐

neering time goes into merely keeping log aggregation working.

Is logging useful in Kubernetes?

We talked a little about how containers generate logs and how you can inspect them

directly in Kubernetes, in “Viewing a Container’s Logs” on page 119. This is a useful

debugging technique for individual containers.

If you do use logging, you should use some form of structured data, like JSON, which

can be automatically parsed (see “The Observability Pipeline” on page 271) rather

than plain-text records.

While centralized log aggregation (to services like ELK) can be useful with Kuber‐

netes applications, it’s certainly not the whole story. While there are some business

What Is Observability? | 267

use cases for centralized logging (audit and security requirements, for example, or

customer analytics), logs can’t give us all the information we need for true observabil‐

ity.

For that, we need to look beyond logs, to something much more powerful.

Introducing Metrics

A more sophisticated way of gathering information about your services is to use met‐

 rics. As the name suggests, a metric is a numerical measure of something. Depending

on the application, relevant metrics might include:

• The number of requests currently being processed

• The number of requests handled per minute (or per second, or per hour)

• The number of errors encountered when handling requests

• The average time it took to serve requests (or the peak time, or the 99th percen‐

tile)

It’s also useful to gather metrics about your infrastructure as well as your applications:

• The CPU usage of individual processes or containers

• The disk I/O activity of nodes and servers

• The inbound and outbound network traffic of machines, clusters, or load balanc‐

ers

Metrics help answer the why? question

Metrics open up a new dimension of monitoring beyond simply working/ not working.

Like the speedometer in your car, or the temperature scale on your thermometer, they

give you numerical information about what’s happening. Unlike logs, metrics can

easily be processed in all sorts of useful ways: drawing graphs, taking statistics, or

alerting on predefined thresholds. For example, your monitoring system might alert

you if the error rate for an application exceeds 10% for a given time period.

Metrics can also help answer the why? question about problems. For example, sup‐

pose users are experiencing long response times (high latency) from your app. You

check your metrics, and you see that the spike in the latency metric coincides with a

similar spike in the CPU usage metric for a particular machine or component. That

immediately gives you a clue about where to start looking for the problem. The com‐

ponent may be wedged, or repeatedly retrying some failed operation, or its host node

may have a hardware problem.

268 | Chapter 15: Observability and Monitoring

Metrics help predict problems

Also, metrics can be predictive: when things go wrong, it usually doesn’t happen all at

once. Before a problem is noticeable to you or your users, an increase in some metric

may indicate that trouble is on the way.

For example, the disk usage metric for a server may creep up, and up over time even‐

tually reach the point where the disk actually runs out of space and things start fail‐

ing. If you alerted on that metric before it got into failure territory, you could prevent

the failure from happening at all.

Some systems even use machine learning techniques to analyze metrics, detect

anomalies, and reason about the cause. This can be helpful, especially in complex dis‐

tributed systems, but for most purposes, simply having a way to gather, graph, and

alert on metrics is plenty good enough.

Metrics monitor applications from the inside

With black-box checks, operators have to make guesses about the internal implemen‐

tation of the app or service, and predict what kind of failures might happen and what

effect this would have on external behavior. By contrast, metrics allow application

developers to export key information about the hidden aspects of the system, based

on their knowledge of how it actually works (and fails):

Stop reverse engineering applications and start monitoring from the inside.

—Kelsey Hightower, Monitorama 2016

Tools like Prometheus, statsd, and Graphite, or hosted services such as Datadog, New

Relic, and Dynatrace, are widely used to gather and manage metrics data.

We’ll talk much more in Chapter 16 about metrics, including what kinds you should

focus on, and what you should do with them. For now, let’s complete our survey of

observability with a look at tracing.

Tracing

Another useful technique in the monitoring toolbox is tracing. It’s especially impor‐

tant in distributed systems. While metrics and logs tell you what’s going on with each

individual component of your system, tracing follows a single user request through

its whole life cycle.

Suppose you’re trying to figure out why some users are experiencing very high

latency for requests. You check the metrics for each of your system components: load

balancer, ingress, web server, application server, database, message bus, and so on,

and everything appears normal. So what’s going on?

What Is Observability? | 269

When you trace an individual (hopefully representative) request from the moment

the user’s connection is opened to the moment it’s closed, you’ll get a picture of how

that overall latency breaks down for each stage of the request’s journey through the

system.

For example, you may find that the time spent handling the request in each stage of

the pipeline is normal, except for the database hop, which is 100 times longer than

normal. Although the database is working fine and its metrics show no problems, for

some reason the application server is having to wait a very long time for requests to

the database to complete.

Eventually you track down the problem to excessive packet loss over one particular

network link between the application servers and the database server. Without the

 request’s eye view provided by distributed tracing, it’s hard to find problems like this.

Some popular distributed tracing tools include Zipkin, Jaeger, and LightStep. Engi‐

neer Masroor Hasan has written a useful blog post describing how to use Jaeger for distributed tracing in Kubernetes.

The OpenTracing framework (part of the Cloud Native Computing Foundation) aims

to provide a standard set of APIs and libraries for distributed tracing.

Observability

Because the term monitoring means different things to different people, from plain

old black-box checks to a combination of metrics, logging, and tracing, it’s becoming

common to use observability as a catch-all term that covers all these techniques. The

observability of your system is a measure of how well-instrumented it is, and how

easily you can find out what’s going on inside it. Some people say that observability is

a superset of monitoring, others that observability reflects a completely different

mindset from traditional monitoring.

Perhaps the most useful way to distinguish these terms is to say that monitoring tells

you whether the system is working, while observability prompts you to ask why it’s not

 working.

Observability is about understanding

More generally, observability is about understanding: understanding what your sys‐

tem does and how it does it. For example, if you roll out a code change that is

designed to improve the performance of a particular feature by 10%, then observabil‐

ity can tell you whether or not it worked. If performance only went up a tiny bit, or

worse, went down slightly, you need to revisit the code.

On the other hand, if performance went up 20%, the change succeeded beyond your

expectations, and maybe you need to think about why your predictions fell short.

270 | Chapter 15: Observability and Monitoring

Observability helps you build and refine your mental model of how the different

parts of your system interact.

Observability is also about data. We need to know what data to generate, what to col‐

lect, how to aggregate it (if appropriate), what results to focus on, and how to query

and display them.

Software is opaque

In traditional monitoring we have lots of data about the machinery; CPU loads, disk

activity, network packets, and so on. But it’s hard to reason backwards from that

about what our software is doing. To do that, we need to instrument the software

itself:

Software is opaque by default; it must generate data in order to clue humans in on what

it is doing. Observable systems allow humans to answer the question, “Is it working

properly?”, and if the answer is no, to diagnose the scope of impact and identify what is

going wrong.

—Christine Spang (Nylas)

Building an observability culture

Even more generally, observability is about culture. It’s a key tenet of the DevOps phi‐

losophy to close the loop between developing code, and running it at scale in produc‐

tion. Observability is the primary tool for closing that loop. Developers and

operations staff need to work closely together to instrument services for observability,

and then figure out the best way to consume and act on the information it provides:

The goal of an observability team is not to collect logs, metrics or traces. It is to build a

culture of engineering based on facts and feedback, and then spread that culture within

the broader organization.

—Brian Knox (DigitalOcean)

The Observability Pipeline

How does observability work, from a practical point of view? It’s common to have

multiple data sources (logs, metrics, and so on) connected to various different data

stores in a fairly ad hoc way.

For example, your logs might go to an ELK server, while metrics go to three or four

different managed services, and traditional monitoring checks report to yet another

service. This isn’t ideal.

For one thing, it’s hard to scale. The more data sources and stores you have, the more

interconnections there are, and the more traffic over those connections. It doesn’t

make sense to put engineering time into making all of those different kinds of con‐

nections stable and reliable.

The Observability Pipeline | 271

Also, the more tightly integrated your systems become with specific solutions or pro‐

viders, the harder it is to change them or to try out alternatives.

An increasingly popular way to address this problem is the observability pipeline: With an observability pipeline, we decouple the data sources from the destinations and

provide a buffer. This makes the observability data easily consumable. We no longer

have to figure out what data to send from containers, VMs, and infrastructure, where

to send it, and how to send it. Rather, all the data is sent to the pipeline, which handles

filtering it and getting it to the right places. This also gives us greater flexibility in

terms of adding or removing data sinks, and it provides a buffer between data produc‐

ers and consumers.

—Tyler Treat

An observability pipeline brings great advantages. Now, adding a new data source is

just a matter of connecting it to your pipeline. Similarly, a new visualization or alert‐

ing service just becomes another consumer of the pipeline.

Because the pipeline buffers data, nothing gets lost. If there’s a sudden surge in traffic

and an overload of metrics data, the pipeline will buffer it rather than drop samples.

Using an observability pipeline requires a standard metrics format (see “Prometheus”

on page 298) and, ideally, structured logging from applications using JSON or some

other sensible serialized data format. Instead of emitting raw text logs, and parsing

them later with fragile regular expressions, start with structured data from the very

beginning.

Monitoring in Kubernetes

So now that we understand a little more about what black-box monitoring is and how

it relates to observability in general, let’s see how it applies to Kubernetes applications.

External Black-Box Checks

As we’ve seen, black-box monitoring can only tell you that your application is down.

But that’s still very useful information. All kinds of things could be wrong with a

cloud native application, and it might still be able to serve some requests acceptably.

Engineers can work on fixing internal problems like slow queries and elevated error

rates, without users really being aware of an issue.

However, a more serious class of problems results in a full-scale outage; the applica‐

tion is unavailable or not working for the majority of users. This is bad for the users,

and depending on the application, it may be bad for your business as well. In order to

detect an outage, your monitoring needs to consume the service in the same way that

a user would.

272 | Chapter 15: Observability and Monitoring

Monitoring mimics user behavior

For example, if it’s an HTTP service, the monitoring system needs to make HTTP

requests to it, not just TCP connections. If the service just returns static text, moni‐

toring can check the text matches some expected string. Usually, it’s a little bit more

complicated than that, and as we saw in “Black-Box Monitoring” on page 263, your

checks can be more complicated too.

In an outage situation, though, it’s quite likely that a simple text match will be suffi‐

cient to tell you the application is down. But making these black-box checks from

inside your infrastructure (for example, in Kubernetes) isn’t enough. An outage can

result from all sorts of problems and failures between the user and the outside edge of

your infrastructure, including:

• Bad DNS records

• Network partitions

• Packet loss

• Misconfigured routers

• Missing or bad firewall rules

• Cloud provider outage

In all these situations, your internal metrics and monitoring might show no problems

at all. Therefore, your top-priority observability task should be to monitor the availa‐

bility of your services from some point external to your own infrastructure. There are

many third-party services that can do this kind of monitoring for you (sometimes

called monitoring as a service, or MaaS), including Uptime Robot, Pingdom, and

Wormly.

Don’t build your own monitoring infrastructure

Most of these services have either a free tier, or fairly inexpensive subscriptions, and

whatever you pay for them you should regard as an essential operating expense. Don’t

bother trying to build your own external monitoring infrastructure; it’s not worth it.

The cost of a year’s Pro subscription to Uptime Robot likely would not pay for a sin‐

gle hour of your engineers’ time.

Monitoring in Kubernetes | 273

Look for the following critical features in an external monitoring provider:

• HTTP/HTTPS checks

• Detect if your TLS certificate is invalid or expired

• Keyword matching (alert when the keyword is missing or when it’s present)

• Automatically create or update checks via an API

• Alerts by email, SMS, webhook, or some other straightforward mechanism

Throughout this book we champion the idea of infrastructure as code, so it should be

possible to automate your external monitoring checks with code as well. For example,

Uptime Robot has a simple REST API for creating new checks, and you can automate

it using a client library or command-line tool like uptimerobot.

It doesn’t matter which external monitoring service you use, so long as you use one.

But don’t stop there. In the next section we’ll see what we can do to monitor the

health of applications inside the Kubernetes cluster itself.

Internal Health Checks

Cloud native applications fail in complex, unpredictable, and hard-to-detect ways.

Applications have to be designed to be resilient and degrade gracefully in the face of

unexpected failures, but ironically, the more resilient they are, the harder it is to

detect these failures by black-box monitoring.

To solve this problem, applications can, and should, do their own health checking.

The developer of a particular feature or service is best placed to know what it needs to

be healthy, and she can write code to check this that exposes the results in a way that

can be monitored from outside the container (like an HTTP endpoint).

Are users happy?

Kubernetes gives us a simple mechanism for applications to advertise their liveness or

readiness, as we saw in “Liveness Probes” on page 72, so this is a good place to start.

Usually, Kubernetes liveness or readiness probes are pretty simple; the application

always responds “OK” to any requests. If it doesn’t respond, therefore, Kubernetes

considers it to be down or unready.

However, as many programmers know from bitter experience, just because a program

runs, doesn’t necessarily mean it works correctly. A more sophisticated readiness

probe should ask “What does this application need to do its job?”

For example, if it needs to talk to a database, it can check that it has a valid and

responsive database connection. If it depends on other services, it can check the serv‐

274 | Chapter 15: Observability and Monitoring

ices’ availability. (Because health checks are run frequently, though, they shouldn’t do

anything too expensive that might affect serving requests from real users.)

Note that we’re still giving a binary yes/no response to the readiness probe. It’s just a

more informed answer. What we’re trying to do is answer the question “Are users

happy?” as accurately as possible.

Services and circuit breakers

As you know, if a container’s liveness check fails, Kubernetes will restart it automati‐

cally, in an exponential backoff loop. This isn’t really that helpful in the situation

where there’s nothing wrong with the container, but one of its dependencies is failing.

The semantics of a failed readiness check, on the other hand, are “I’m fine, but I can’t

serve user requests at the moment.”

In this situation, the container will be removed from any Services it’s a backend for,

and Kubernetes will stop sending it requests until it becomes ready again. This is a

better way to deal with a failed dependency.

Suppose you have a chain of 10 microservices, each of which depends on the next for

some critical part of its work. The last service in the chain fails. The next-to-last ser‐

vice will detect this and start failing its readiness probe. Kubernetes will disconnect it,

and the next service in line detects this, and so on up the chain. Eventually the front‐

end service will fail, and (hopefully) a black-box monitoring alert will be tripped.

Once the problem with the base service is fixed, or maybe cured by an automatic

restart, all the other services in the chain will automatically become ready again in

turn, without being restarted or losing any state. This is an example of what’s called a

 circuit breaker pattern. When an application detects a downstream failure, it takes itself out of service (via the readiness check) to prevent any more requests being sent

to it until the problem is fixed.

Graceful degradation

While a circuit breaker is useful for surfacing problems as soon as possible, you

should design your services to avoid having the whole system fail when one or more

component services are unavailable. Instead, try to make your services degrade grace‐

 ful y: even if they can’t do everything they’re supposed to, maybe they can still do

some things.

In distributed systems, we have to assume that services, components, and connec‐

tions will fail mysteriously and intermittently more or less all the time. A resilient sys‐

tem can handle this without failing completely.

Monitoring in Kubernetes | 275

Summary

There’s a lot to say about monitoring. We didn’t have space to say as much as we

wanted to, but we hope this chapter has given you some useful information about tra‐

ditional monitoring techniques, what they can do and what they can’t do, and how

things need to change in a cloud native environment.

The notion of observability introduces us to a bigger picture than traditional log files

and black-box checks. Metrics form an important part of this picture, and in the next

and final chapter, we’ll take you on a deep dive into the world of metrics in Kuber‐

netes.

Before turning the page, though, you might like to recall these key points:

• Black-box monitoring checks observe the external behavior of a system, to detect

predictable failures.

• Distributed systems expose the limitations of traditional monitoring, because

they’re not in either up or down states: they exist in a constant state of partially

degraded service. In other words, nothing is ever completely right aboard a ship.

• Logs can be useful for post-incident troubleshooting, but they’re hard to scale.

• Metrics open up a new dimension beyond simply working/ not working, and give

you continuous numerical time-series data on hundreds or thousands of aspects

of your system.

• Metrics can help you answer the why question, as well as identify problematic

trends before they lead to outages.

• Tracing records events with precise timing through the life cycle of an individual

request, to help you debug performance problems.

• Observability is the union of traditional monitoring, logging, metrics, and trac‐

ing, and all the other ways you can understand your system.

• Observability also represents a shift toward a team culture of engineering based

on facts and feedback.

• It’s still important to check that your user-facing services are up, with external

black-box checks, but don’t try to build your own: use a third-party monitoring

service like Uptime Robot.

• Nines don’t matter if users aren’t happy.

276 | Chapter 15: Observability and Monitoring

CHAPTER 16

Metrics in Kubernetes

It is possible to know so much about a subject that you become totally ignorant.

—Frank Herbert, Chapterhouse: Dune

In this chapter we’ll take the concept of metrics that we introduced in Chapter 15 and

dive into the details: what kind of metrics are there, which ones are important for

cloud native services, how do you choose which metrics to focus on, how do you ana‐

lyze metrics data to get actionable information, and how do you turn raw metrics

data into useful dashboards and alerts? Finally, we’ll outline some of the options for

metrics tools and platforms.

What Are Metrics, Really?

Since a metrics-centered approach to observability is relatively new to the DevOps

world, let’s take a moment to talk about exactly what metrics are, and how best to use

them.

As we saw in “Introducing Metrics” on page 268, metrics are numerical measures of

specific things. A familiar example from the world of traditional servers is the mem‐

ory usage of a particular machine. If only 10% of physical memory is currently alloca‐

ted to user processes, the machine has spare capacity. But if 90% of the memory is in

use, the machine is probably pretty busy.

So one valuable kind of information that metrics can give us is a snapshot of what’s

going on at a particular instant. But we can do more. Memory usage goes up and

down all the time as workloads start and stop, but sometimes what we’re interested in

is the change in memory usage over time.

277

Time Series Data

If you sample memory usage regularly, you can create a time series of that data.

Figure 16-1 shows a graph of the time series data for memory usage on a Google

Kubernetes Engine node, over one week. This gives a much more intelligible picture

of what’s happening than a handful of instantaneous values.

 Figure 16-1. Time series graph of memory usage for a GKE node

Most metrics that we’re interested in for cloud native observability purposes are

expressed as time series. They are also all numeric. Unlike log data, for example, met‐

rics are values that you can do math and statistics on.

Counters and Gauges

What kind of numbers are they? While some quantities can be represented by inte‐

gers (the number of physical CPUs in a machine, for example), most require a deci‐

278 | Chapter 16: Metrics in Kubernetes

mal part, and to save having to handle two different types of numbers, metrics are

almost always represented as floating-point decimal values.

Given that, there are two main types of metric values: counters and gauges. Counters

can only go up (or reset to zero); they’re suitable for measuring things like number of

requests served and number of errors received. Gauges, on the other hand, can vary

up and down; they’re useful for continuously varying quantities like memory usage,

or for expressing ratios of other quantities.

The answers to some questions are just yes or no: whether a particular endpoint is

responding to HTTP connections, for example. In this case the appropriate metric

will be a gauge with a limited range of values: 0 and 1, perhaps.

For example, an HTTP check of an endpoint might be named something like

http.can_connect, and its value might be 1 when the endpoint is responding, and 0

otherwise.

What Can Metrics Tell Us?

What use are metrics? Well, as we’ve seen earlier in this chapter, metrics can tell you

when things are broken. For example, if your error rate suddenly goes up (or requests

to your support page suddenly spike), that may indicate a problem. You can generate

alerts automatically for certain metrics based on a threshold.

But metrics can also tell you how well things are working, for example, how many

simultaneous users your application is currently supporting. Long-term trends in

these numbers can be useful for both operations decision making, and for business

intelligence.

Choosing Good Metrics

At first, you might think “If metrics are good, then lots of metrics must be even bet‐

ter!” But it doesn’t work that way. You can’t monitor everything. Google Stackdriver,

for example, exposes literally hundreds of metrics about your cloud resources, includ‐

ing:

instance/network/sent_packets_count

The number of network packets sent by each compute instance

storage/object_count

The total number of objects in each storage bucket

container/cpu/utilization

The percentage of its CPU allocation that a container is currently using

Choosing Good Metrics | 279

The list goes on (and on, and on). Even if you could display graphs of all these metrics at once, which would need a monitor screen the size of a house, you’d never be

able to take in all that information and deduce anything useful from it. To do that, we

need to focus on the subset of metrics that we care about.

So what should you focus on when observing your own applications? Only you can

answer that, but we have a few suggestions that may be helpful. In the rest of this sec‐

tion, we’ll outline some common metrics patterns for observability, aimed at different

audiences and designed to meet different requirements.

It’s worth saying that this is a perfect opportunity for some DevOps collaboration,

and you should start thinking and talking about what metrics you’ll need at the

beginning of development, not at the end (see “Learning Together” on page 6).

Services: The RED Pattern

Most people using Kubernetes are running some kind of web service: users make

requests, and the application sends responses. The users could be programs or other

services; in a distributed system based on microservices, each service makes requests

to other services and uses the results to serve information back to yet more services.

Either way, it’s a request-driven system.

What’s useful to know about a request-driven system?

• One obvious thing is the number of requests you’re getting.

• Another is the number of requests that failed in various ways; that is to say, the

number of errors.

• A third useful metric is the duration of each request. This gives you an idea how

well your service is performing and how unhappy your users might be getting.

The Requests-Errors-Duration pattern (RED for short) is a classic observability tool

that goes back to the earliest days of online services. Google’s Site Reliability Engineer‐

 ing book talks about the Four Golden Signals, which are essentially requests, errors,

duration, and saturation (we’ll talk about saturation in a moment).

Engineer Tom Wilkie, who coined the RED acronym, has outlined the rationale

behind this pattern in a blog post:

Why should you measure the same metrics for every service? Surely each service is

special? The benefits of treating each service the same, from a monitoring perspective,

is scalability in your operations teams. By making every service look, feel and taste the

same, this reduces the cognitive load on those responding to an incident. As an aside, if

you treat all your services the same, many repetitive tasks become automatable.

—Tom Wilkie

280 | Chapter 16: Metrics in Kubernetes

So how exactly do we measure these numbers? Since the total number of requests

only ever goes up, it’s more useful to look at request rate: the number of requests per

second, for example. This gives us a meaningful idea of how much traffic the system

is handling over a given time interval.

Because error rate is related to request rate, it’s a good idea to measure errors as a per‐

centage of requests. So, for example, a typical service dashboard might show:

• Requests received per second

• Percentage of requests that returned an error

• Duration of requests (also known as latency)

Resources: The USE Pattern

You’ve seen that the RED pattern gives you useful information about how your serv‐

ices are performing, and how your users are experiencing them. You could think of

this as a top-down way of looking at observability data.

On the other hand, the USE pattern, developed by Netflix performance engineer

Brendan Gregg, is a bottom-up approach that is intended to help analyze perfor‐

mance issues and find bottlenecks. USE stands for Utilization, Saturation, and Errors.

Rather than services, with USE we’re interested in resources: physical server compo‐

nents such as CPU and disks, or network interfaces and links. Any of these could be a

bottleneck in system performance, and the USE metrics will help us find out which:

 Utilization

The average time that the resource was busy serving requests, or the amount of

resource capacity that’s currently in use. For example, a disk that is 90% full

would have a utilization of 90%.

 Saturation

The extent to which the resource is overloaded, or the length of the queue of

requests waiting for this resource to become available. For example, if there are

10 processes waiting to run on a CPU, it has a saturation value of 10.

 Errors

The number of times an operation on that resource failed. For example, a disk

with some bad sectors might have an error count of 25 failed reads.

Measuring this data for the key resources in your system is a good way to spot bottle‐

necks. Resources with low utilization, no saturation, and no errors are probably fine.

Anything that deviates from this is worth looking into. For example, if one of your

network links is saturated, or has a high number of errors, it may be contributing to

overall performance problems:

Choosing Good Metrics | 281

The USE Method is a simple strategy you can use to perform a complete a check of

system health, identifying common bottlenecks and errors. It can be deployed early in

the investigation and quickly identify problem areas, which then can be studied in

more detail other methodologies, if need be.

The strength of USE is its speed and visibility: by considering all resources, you are

unlikely to overlook any issues. It will, however, only find certain types of issues – bot‐

tlenecks and errors – and should be considered as one tool in a larger toolbox.

—Brendan Gregg

Business Metrics

We’ve looked at application and service metrics (“Services: The RED Pattern” on page

280), which are likely to be of most interest to developers, and hardware metrics

(“Resources: The USE Pattern” on page 281), which are helpful to ops and infrastruc‐

ture engineers. But what about the business? Can observability help managers and

executives understand how the business is performing, and give them useful input to

business decisions? And what metrics would contribute to this?

Most businesses already track the key performance indicators (KPIs) that matter to

them, such as sales revenue, profit margin, and cost of customer acquisition. These

metrics usually come from the finance department and don’t need support from

developers and infrastructure staff.

But there are other useful business metrics that can be generated by applications and

services. For example, a subscription business, such as a software-as-a-service (SaaS)

product, needs to know data about its subscribers:

• Funnel analytics (how many people hit the landing page, how many click

through to the sign-up page, how many complete the transaction, and so on)

• Rate of sign-ups and cancellations (churn)

• Revenue per customer (useful for calculating monthly recurring revenue, average

revenue per customer, and lifetime value of a customer)

• Effectiveness of help and support pages (for example, percentage of people who

answered yes to the question “Did this page solve your problem?”)

• Traffic to the system status announcement page (which often spikes when there

are outages or degraded services)

Much of this information is easier to gather by generating real-time metrics data from

your applications, rather than to try and analyze after the fact by processing logs and

querying databases. When you’re instrumenting your applications to produce met‐

rics, don’t neglect information that is important to the business.

There isn’t necessarily a clear line between the observability information the business

and customer engagement experts need, and what the technical experts need. In fact,

282 | Chapter 16: Metrics in Kubernetes

there’s a lot of overlap. It’s wise to discuss metrics at an early stage with all the stake‐

holders involved, and agree on what data needs to be collected, how often, how it’s

aggregated, and so on.

Nonetheless, these two (or more) groups have different questions to ask of the

observability data that you’re gathering, so each will need its own view on that data.

You can use the common data lake to create dashboards (see “Graphing Metrics with

Dashboards” on page 291) and reports for each of the different groups involved.

Kubernetes Metrics

We’ve talked about observability and metrics in general terms, and looked at different

types of data and ways to analyze it. So how does all this apply to Kubernetes? What

metrics is it worth tracking for Kubernetes clusters, and what kinds of decisions can

they help us make?

At the lowest level, a tool called cAdvisor monitors the resource usage and perfor‐

mance statistics for the containers running on each cluster node—for example, how

much CPU, memory, and disk space each container is using. cAdvisor is part of the

Kubelet.

Kubernetes itself consumes this cAdvisor data, by querying the Kubelet, and uses the

information to make decisions about scheduling, autoscaling, and so on. But you can

also export this data to a third-party metrics service, where you can graph it and alert

on it. For example, it would be useful to track how much CPU and memory each

container is using.

You can also monitor Kubernetes itself, using a tool called kube-state-metrics. This

listens to the Kubernetes API and reports information about logical objects such as

nodes, Pods, and Deployments. This data can also be very useful for cluster observa‐

bility. For example, if there are replicas configured for a Deployment that can’t cur‐

rently be scheduled for some reason (perhaps the cluster doesn’t have enough

capacity), you probably want to know about it.

As usual, the problem is not a shortage of metrics data, but deciding which key met‐

rics to focus on, track, and visualize. Here are some suggestions.

Cluster health metrics

To monitor the health and performance of your cluster at the top level, you should be

looking at least at the following:

• Number of nodes

• Node health status

• Number of Pods per node, and overall

Choosing Good Metrics | 283

• Resource usage/allocation per node, and overall

These overview metrics will help you understand how your cluster is performing,

whether it has enough capacity, how its usage is changing over time, and whether you

need to expand or reduce the cluster.

If you’re using a managed Kubernetes service such as GKE, unhealthy nodes will be

detected automatically and autorepaired (providing autorepair is enabled for your

cluster and node pool). It’s still useful to know if you’re getting an unusual number of

failures, which may indicate an underlying problem.

Deployment metrics

For all your deployments, it’s worth knowing:

• Number of deployments

• Number of configured replicas per deployment

• Number of unavailable replicas per deployment

It’s especially useful to be able to track this information over time if you have enabled

some of the various autoscaling options available in Kubernetes (see “Autoscaling” on

page 102). Data on unavailable replicas in particular will help alert you about capacity

issues.

Container metrics

At the container level, the most useful things to know are:

• Number of containers/Pods per node, and overall

• Resource usage for each container against its requests/limits (see “Resource

Requests” on page 70)

• Liveness/readiness of containers

• Number of container/Pod restarts

• Network in/out traffic and errors for each container

Because Kubernetes automatically restarts containers that have failed or exceeded

their resource limits, you need to know how often this is happening. An excessive

number of restarts may tell you there’s a problem with a particular container. If a con‐

tainer is regularly busting its resource limits, that could be a sign of a program bug, or

maybe just that you need to increase the limits slightly.

284 | Chapter 16: Metrics in Kubernetes

Application metrics

Whichever language or software platform your application uses, there’s probably a

library or tool available to allow you to export custom metrics from it. These are pri‐

marily useful for developers and operations teams to be able to see what the applica‐

tion is doing, how often it’s doing it, and how long it takes. These are key indicators

of performance problems or availability issues.

The choice of application metrics to capture and export depends on exactly what your

application does. But there are some common patterns. For example, if your service

consumes messages from a queue, processes them, and takes some action based on

the message, you might want to report the following metrics:

• Number of messages received

• Number of successfully processed messages

• Number of invalid or erroneous messages

• Time to process and act on each message

• Number of successful actions generated

• Number of failed actions

Similarly, if your application is primarily request-driven, you can use the RED pattern

(see “Services: The RED Pattern” on page 280):

• Requests received

• Errors returned

• Duration (time to handle each request)

It can be difficult to know what metrics are going to be useful when you’re at an early

stage of development. If in doubt, record everything. Metrics are cheap; you may dis‐

cover an unforeseen production issue a long way down the line, thanks to metrics

data that didn’t seem important at the time.

If it moves, graph it. Even it doesn’t move, graph it anyway, because it might someday.

—Laurie Denness (Bloomberg)

If you are going to have your application generate business metrics (see “Business

Metrics” on page 282), you can calculate and export these as custom metrics too.

Another thing that may be useful to the business is to see how your applications are

performing against any Service Level Objectives (SLO) or Service Level Agreements

(SLA) that you may have with customers, or how vendor services are performing

against SLOs. You could create a custom metric to show the target request duration

Choosing Good Metrics | 285

(for example, 200 ms), and create a dashboard that overlays this on the actual current

performance.

Runtime metrics

At the runtime level, most metrics libraries will also report useful data about what the

program is doing, such as:

• Number of processes/threads/goroutines

• Heap and stack usage

• Nonheap memory usage

• Network/I/O buffer pools

• Garbage collector runs and pause durations (for garbage-collected languages)

• File descriptors/network sockets in use

This kind of information can be very valuable for diagnosing poor performance, or

even crashes. For example, it’s quite common for long-running applications to gradu‐

ally use more and more memory until they are killed and restarted due to exceeding

Kubernetes resource limits. Application runtime metrics may help you work out

exactly where this memory is going, especially in combination with custom metrics

about what the application is doing.

Now that you have some idea what metrics data is worth capturing, we’ll turn in the

next section to what to do with this data: in other words, how to analyze it.

Analyzing Metrics

Data is not the same thing as information. In order to get useful information out of

the raw data we’ve captured, we need to aggregate, process, and analyze it, which

means doing statistics on it. Statistics can be a slippery business, especially in the

abstract, so let’s illustrate this discussion with a concrete example: request duration.

In “Services: The RED Pattern” on page 280 we mentioned that you should track the

duration metric for service requests, but we didn’t say exactly how to do that. What

precisely do we mean by duration? Usually, we’re interested in the time the user has to

wait to get a response to some request.

With a website, for example, we might define duration as the time between when the

user connects to the server, and when the server first starts sending data in response.

(The user’s total waiting time is actually longer than that, because making the connec‐

tion takes some time, and so does reading the response data and rendering it in a

browser. We usually don’t have access to that data, though, so we just capture what we

can.)

286 | Chapter 16: Metrics in Kubernetes

And every request has a different duration, so how do we aggregate the data for hun‐

dreds or even thousands of requests into a single number?

What’s Wrong with a Simple Average?

The obvious answer is to take the average. But on closer inspection, what average

means isn’t necessarily straightforward. An old joke in statistics is that the average

person has slightly less than two legs. To put it another way, most people have more

than the average number of legs. How can this be?

Most people have two legs, but some have one or none, bringing down the overall

average. (Possibly some people have more than two, but many more people have

fewer than two.) A simple average doesn’t give us much useful information about leg

distribution in the population, or about most people’s experience of leg ownership.

There is also more than one kind of average. You probably know that the common‐

place notion of average refers to the mean. The mean of a set of values is the total of

all the values, divided by the number of values. For example, the mean age of a group

of three people is the total of their ages divided by 3.

The median, on the other hand, refers to the value that would divide the set into two

equal halves, one containing values larger than the median, and the other containing

smaller values. For example, in any group of people, half of them are taller than the

median height, by definition, and half of them are shorter.

Means, Medians, and Outliers

What’s the problem with taking a straightforward average (mean) of request dura‐

tion? One important problem is that the mean is easily skewed by outliers: one or two

extreme values can distort the average quite a bit.

Therefore, the median, which is less affected by outliers, is a more helpful way of

averaging metrics than the mean. If the median latency for a service is 1 second, half

your users experience a latency less than 1 second, and half experience more.

Figure 16-2 shows how averages can be misleading. All four sets of data have the

same mean value, but look very different when shown graphically (statisticians know

this example as Anscombe’s quartet). Incidentally, this is also a good way to demon‐

strate the importance of graphing data, rather than just looking at raw numbers.

Analyzing Metrics | 287

 Figure 16-2. These four datasets all have the same average (mean) value, (image b y Schutz, CC BY-SA 3.0).

Discovering Percentiles

When we talk about metrics for observing request-driven systems, we’re usually

interested in knowing what the worst latency experience is for users, rather than the

average. After all, having a median latency of 1 second for all users is no comfort to

the small group who may be experiencing latencies of 10 seconds or more.

The way to get this information is to break down the data into percentiles. The 90th

percentile latency (often referred to as P90) is the value that is greater than that expe‐

rienced by 90% of your users. To put it another way, 10% of users will experience a

latency higher than the P90 value.

Expressed in this language, the median is the 50th percentile, or P50. Other percen‐

tiles that are often measured in observability are P95 and P99, the 95th and 99th per‐

centile, respectively.

Applying Percentiles to Metrics Data

Igor Wiedler of Travis CI has produced a nice demonstration of what this means in

concrete terms, starting from a dataset of 135,000 requests to a production service

288 | Chapter 16: Metrics in Kubernetes

over 10 minutes (Figure 16-3). As you can see, this data is noisy and spiky, and it’s not

easy to draw any useful conclusions from it in a raw state.

 Figure 16-3. Raw latency data for 135,000 requests, in ms

Now let’s see what happens if we average that data over 10-second intervals

(Figure 16-4). This looks wonderful: all the data points are below 50 ms. So it looks as

though most of our users are experiencing latencies of less than 50 ms. But is that

really true?

 Figure 16-4. Average (mean) latency for the same data, over 10-second intervals

Let’s graph the P99 latency instead. This is the maximum latency observed, if we dis‐

card the highest 1% of samples. It looks very different (Figure 16-5). Now we see a

Analyzing Metrics | 289

jagged pattern with most of the values clustering between 0 and 500 ms, with several

requests spiking close to 1,000 ms.

 Figure 16-5. P99 (99th percentile) latency for the same data

We Usually Want to Know the Worst

Since we disproportionately notice slow web requests, the P99 data is likely to give us

a more realistic picture of the latency experienced by users. For example, consider a

high-traffic website with 1 million page views per day. If the P99 latency is 10 sec‐

onds, then 10,000 page views take longer than 10 seconds. That’s a lot of unhappy

users.

But it gets worse: in distributed systems, each page view may require tens or even

hundreds of internal requests to fulfill. If the P99 latency of each internal service is

10s, and 1 page view makes 10 internal requests, then the number of slow page views

rises to 100,000 per day. Now around 10% of users are unhappy, which is a big prob‐

lem.

Beyond Percentiles

One problem with percentile latencies, as implemented by many metrics services, is

that requests tend to be sampled locally, and statistics then aggregated centrally. Con‐

sequently, you end up with your P99 latency being an average of the P99 latencies

reported by each agent, potentially across hundreds of agents.

Well, a percentile is already an average, and trying to average averages is a well-

known statistical trap. The result is not necessarily the same as the real average.

Depending how we choose to aggregate the data, the final P99 latency figure can vary

by as much as a factor of 10. That doesn’t bode well for a meaningful result. Unless

290 | Chapter 16: Metrics in Kubernetes

your metrics service ingests every single raw event and produces a true average, this

figure will be unreliable.

Engineer Yan Cui suggests that a better approach is to monitor what’s wrong, not what’s right:

What could we use instead of percentiles as the primary metric to monitor our applica‐

tion’s performance with and alert us when it starts to deteriorate?

If you go back to your SLOs or SLAs, you probably have something along the lines of

“99% of requests should complete in 1s or less”. In other words, less than 1% of

requests is allowed to take more than 1s to complete.

So what if we monitor the percentage of requests that are over the threshold instead?

To alert us when our SLAs are violated, we can trigger alarms when that percentage is

greater than 1% over some predefined time window.

—Yan Cui

If each agent submits a metric of total requests and the number of requests that were

over threshold, we can usefully average that data to produce a percentage of requests

that exceeded SLO—and alert on it.

Graphing Metrics with Dashboards

So far in this chapter we’ve learned about why metrics are useful, what metrics we

should record, and some useful statistical techniques for analyzing them in bulk. All

well and good, but what are we actually going to do with all these metrics?

The answer is simple: we’re going to graph them, group them into dashboards, and

possibly alert on them. We’ll talk about alerting in the next section, but for now, let’s

look at some tools and techniques for graphing and dashboarding.

Use a Standard Layout for All Services

When you have more than a handful of services, it makes sense to always lay out your

dashboards in the same way for each service. Someone responding to an on-call page

can glance at the dashboard for the affected service and know how to interpret it

immediately, without having to be familiar with that specific service.

Tom Wilkie, in a Weaveworks blog post, suggests the following standard format (see

Figure 16-6:

• One row per service

• Request and error rate on the left, with errors as a percentage of requests

• Latency on the right

Graphing Metrics with Dashboards | 291

 Figure 16-6. Weaveworks suggested dashboard layout for services

You don’t have to use this exact layout; the important thing is that you always use the

same layout for every dashboard, and that everyone is familiar with it. You should

review your key dashboards regularly (at least once a week), looking at the previous

week’s data, so that everyone knows what normal looks like.

The requests, errors, duration dashboard works well for services (see “Services: The

RED Pattern” on page 280). For resources, such as cluster nodes, disks, and network,

the most useful things to know are usually utilization, saturation, errors (see “Resour‐

ces: The USE Pattern” on page 281).

Build an Information Radiator with Master Dashboards

If you have a hundred services, you have a hundred dashboards, but you probably

won’t look at them very often. It’s still important to have that information available (to

help spot which service is failing, for example), but at this scale you need a more gen‐

eral overview.

To do this, make a master dashboard that shows requests, errors, and duration across

 al your services, in aggregate. Don’t do anything fancy like stacked area charts; stick

292 | Chapter 16: Metrics in Kubernetes

to simple line graphs of total requests, total error percentage, and total latency. These

are easier to interpret and more accurate visualizations than complex charts.

Ideally, you’ll be using an information radiator (also known as a wallboard, or Big

Visible Chart). This is a large screen showing key observability data that is visible to

everybody in the relevant team or office. The purpose of an information radiator is:

• To show the current system status at a glance

• To send a clear message about which metrics the team considers important

• To make people familiar with what normal looks like

What should you include on this radiator screen? Only vital information. Vital, in the

sense of real y important, but also in the sense of vital signs: information that tells you

about the life of the system.

The vital signs monitors you’ll see next to a hospital bed are a good example. They

show the key metrics for human beings: heart rate, blood pressure, oxygen saturation,

temperature, and breathing rate. There are many other metrics you could track for a

patient, and they have medically important uses, but at the master dashboard level,

these are the key ones. Any serious medical problem will show up in one or more of

these metrics; everything else is a matter of diagnostics.

Similarly, your information radiator should show the vital signs of your business or

service. If it has numbers, it should probably have no more than four or five numbers.

If it has graphs, it should have no more than four or five graphs.

It’s tempting to cram too much information into a dashboard, so it looks complicated

and technical. That’s not the goal. The goal is to focus on a few key things and make

them easily visible from across a room (see Figure 16-7).

Dashboard Things That Break

Apart from your main information radiator, and dashboards for individual services

and resources, you may want to create dashboards for specific metrics that tell you

important things about the system. You might be able to think of some of these things

already, based on the system architecture. But another useful source of information is

 things that break.

Graphing Metrics with Dashboards | 293

 Figure 16-7. Example information radiator produced by Grafana Dash Gen

Every time you have an incident or outage, look for a metric, or combination of met‐

rics, which would have alerted you to this problem in advance. For example, if you

have a production outage caused by a server running out of disk space, it’s possible

that a graph of disk space on that server would have warned you beforehand that the

available space was trending downward and heading into outage territory.

We’re not talking here about problems that happen over a period of minutes or even

hours; those are usually caught by automated alerts (see “Alerting on Metrics” on page

295). Rather, we’re interested in the slow-moving icebergs that draw closer over days

or weeks, and if you don’t spot them and take avoiding action, will sink your system

at the worst possible time.

After an incident, always ask “What would have warned us about this problem in

advance, if only we’d been aware of it?” If the answer is a piece of data you already

had, but didn’t pay attention to, take action to highlight that data. A dashboard is one

possible way to do this.

While alerts can tell you that some value has exceeded a preset threshold, you may

not always know in advance what the danger level is. A graph lets you visualize how

that value is behaving over long periods of time, and helps you detect problematic

trends before they actually affect the system.

294 | Chapter 16: Metrics in Kubernetes

Alerting on Metrics

You might be surprised that we’ve spent most of this chapter talking about observabil‐

ity and monitoring without mentioning alerts. For some people, alerts are what mon‐

itoring is all about. We think that philosophy needs to change, for a number of

reasons.

What’s Wrong with Alerts?

Alerts indicate some unexpected deviation from a stable, working state. Well, dis‐

tributed systems don’t have those states!

As we’ve mentioned, large-scale distributed systems are never up; they’re almost

always in a state of partially degraded service (see “Cloud native applications are

never up” on page 266). They have so many metrics that if you alert every time some

metric goes outside normal limits, you’d be sending hundreds of pages a day to no

good purpose:

People are over-paging themselves because their observability blows and they don’t

trust their tools to let them reliably debug and diagnose the problem. So they get tens

or hundreds of alerts, which they pattern-match for clues about what the root cause

might be. They’re flying blind. In the chaotic future we’re all hurtling toward, you

actually have to have the discipline to have radically fewer paging alerts, not more.

Request rate, latency, error rate, saturation.

—Charity Majors

For some unfortunate people, on-call alert pages are a way of life. This is a bad thing,

not just for the obvious human reasons. Alert fatigue is a well-known issue in medi‐

cine, where clinicians can rapidly become desensitized by constant alarms, making

them more likely to overlook a serious issue when it does arise.

For a monitoring system to be useful, it has to have a very high signal-to-noise ratio.

False alarms are not only annoying, but dangerous: they reduce trust in the system,

and condition people that alerts can be safely ignored.

Excessive, incessant, and irrelevant alarms were a major factor in the Three Mile

Island disaster, and even when individual alarms are well-designed, operators can be overwhelmed by too many of them going off simultaneously.

An alert should mean one very simple thing: Action needs to be taken now, by a per‐

 son.

If no action is needed, no alert is needed. If action needs to happen sometime, but not

right now, the alert can be downgraded to an email or chat message. If the action can

be taken by an automated system, then automate it: don’t wake up a valuable human

being.

Alerting on Metrics | 295

On-call Should Not Be Hell

While the idea of being on-call for your own services is key to the DevOps philoso‐

phy, it’s equally important that being on-call should be as painless an experience as

possible.

Alert pages should be a rare and exceptional occurrence. When they do happen, there

should be a well-established and effective procedure for handling them, which puts as

little strain as possible on the responder.

Nobody should be on-call all the time. If this is the case, add more people to the rota‐

tion. You don’t need to be a subject matter expert to be on-call: your main task is to

triage the problem, decide if it needs action, and escalate it to the right people.

While the burden of on-call should be fairly distributed, people’s personal circum‐

stances differ. If you have a family, or other commitments outside work, it may not be

so easy for you to take on-call shifts. It takes careful and sensitive management to

arrange on-call in a way that’s fair to everybody.

If the job involves being on-call, that should be made clear to the person when they’re

hired. Expectations about the frequency and circumstances of on-call shifts should be

written into their contract. It’s not fair to hire someone for a strictly 9–5 job, and then

decide you also want them to be on-call nights and weekends.

On-call should be properly compensated with cash, time off in lieu, or some other

meaningful benefit. This applies whether or not you actually receive any alerts; when

you’re on-call, to some extent you’re at work.

There should also be a hard limit on the amount of time someone can spend on-call.

People with more spare time or energy may want to volunteer to help reduce the

stress on their coworkers, and that’s great, but don’t let anyone take on too much.

Recognize that when you put people on-call, you are spending human capital. Spend

it wisely.

Urgent, Important, and Actionable Alerts

If alerts are so terrible, why are we talking about them at all? Well, you still need

alerts. Things go wrong, blow up, fall over, and grind to a halt—usually at the most

inconvenient time.

Observability is wonderful, but you can’t find a problem when you’re not looking for

one. Dashboards are great, but you don’t pay somebody to sit looking at a dashboard

all day. For detecting an outage or issue that’s happening right now, and drawing a

human’s attention to it, you can’t beat automated alerts based on thresholds.

296 | Chapter 16: Metrics in Kubernetes

For example, you might want the system to alert you if error rates for a given service

exceed 10% for some period of time, like 5 minutes. You might generate an alert when

P99 latency for a service goes above some fixed value, like 1000 ms.

In general, if a problem has real or potential business impact, and action needs to be

taken now, by a person, it’s a possible candidate for an alert page.

Don’t alert on every metric. Out of hundreds or possibly thousands of metrics, you

should have only a handful of metrics that can generate alerts. Even when they do

generate alerts, that doesn’t necessarily mean you need to page somebody.

Pages should be restricted to only urgent, important, and actionable alerts:

• Alerts that are important, but not urgent, can be dealt with during normal work‐

ing hours. Only things that can’t wait till morning should be paged.

• Alerts that are urgent, but not important, don’t justify waking someone up. For

example, the failure of a little-used internal service that doesn’t affect customers.

• If there’s no immediate action that can be taken to fix it, there’s no point paging

about it.

For everything else, you can send asynchronous notifications: emails, Slack messages,

support tickets, project issues, and so on. They will be seen and dealt with in a timely

fashion, if your system is working properly. You don’t need to send someone’s cortisol

levels skyrocketing by waking them up in the middle of the night with a blaring

alarm.

Track Your Alerts, Out-of-Hours Pages, and Wake-ups

Your people are just as critical to your infrastructure as your cloud servers and

Kubernetes clusters, if not more so. They’re probably more expensive, and certainly

more difficult to replace. It makes sense, then, to monitor what’s happening to your

people in just the same way as you monitor what’s happening with your services.

The number of alerts sent in a given week is a good indicator of the overall health and

stability of your system. The number of urgent pages, especially the number of pages

sent out-of-hours, on weekends, and during normal sleep times, is a good indicator of

your team’s overall health and morale.

You should set a budget for the number of urgent pages, especially out of hours, and

it should be very low. One or two out-of-hours pages per on-call engineer per week

should probably be the limit. If you’re regularly exceeding this, you need to fix the

alerts, fix the system, or hire more engineers.

Review all urgent pages, at least weekly, and fix or eliminate any false alarms or

unnecessary alerts. If you don’t take this seriously, people won’t take your alerts seri‐

Alerting on Metrics | 297

ously. And if you regularly interrupt people’s sleep and private life with unnecessary

alerts, they will start looking for better jobs.

Metrics Tools and Services

Let’s get into some specifics, then. What tools or services should you use to collect,

analyze, and communicate metrics? In “Don’t build your own monitoring infrastruc‐

ture” on page 273, we made the point that, when faced with a commodity problem,

you should use a commodity solution. Does that mean you should necessarily use a

third-party, hosted metrics service like Datadog or New Relic?

The answer here isn’t quite so clear-cut. While these services offer lots of powerful

features, they can be expensive, especially at scale. There isn’t such a compelling busi‐

ness case against running your own metrics server, because there is an excellent free

and open source product available.

Prometheus

The de facto standard metrics solution in the cloud native world is Prometheus. It’s

very widely used, especially with Kubernetes, and almost everything can interoperate

with Prometheus in some way, so it’s the first thing you should consider when you’re

thinking about metrics monitoring options.

Prometheus is an open source systems monitoring and alerting toolkit, based on time

series metrics data. The core of Prometheus is a server that collects and stores met‐

rics. It also has various other optional components, such as an alerting tool (Alert‐

manager), and client libraries for programming languages such as Go, which you can

use to instrument your applications.

It all sounds rather complicated, but in practice it’s very simple. You can install Prom‐

etheus in your Kubernetes cluster with one command, using a standard Helm chart

(see “Helm: A Kubernetes Package Manager” on page 64). It will then gather metrics

automatically from the cluster, and also from any applications you tell it to, using a

process called scraping.

Prometheus scrapes metrics by making an HTTP connection to your application on a

prearranged port, and downloading whatever metrics data is available. It then stores

the data in its database, where it will be available for you to query, graph, or alert on.

Prometheus’s approach to collecting metrics is called pul monitor‐

ing. In this scheme, the monitoring server contacts the application

and requests metrics data. The opposite approach, called push, and

used by some other monitoring tools such as StatsD, works the

other way: applications contact the monitoring server to send it

metrics.

298 | Chapter 16: Metrics in Kubernetes

Like Kubernetes itself, Prometheus is inspired by Google’s own infrastructure. It was

developed at SoundCloud, but it takes many of its ideas from a tool called Borgmon.

Borgmon, as the name suggests, was designed to monitor Google’s Borg container

orchestration system (see “From Borg to Kubernetes” on page 11):

Kubernetes directly builds on Google’s decade-long experience with their own cluster

scheduling system, Borg. Prometheus’s bonds to Google are way looser but it draws a

lot of inspiration from Borgmon, the internal monitoring system Google came up with

at about the same time as Borg. In a very sloppy comparison, you could say that

Kubernetes is Borg for mere mortals, while Prometheus is Borgmon for mere mortals.

Both are “second systems” trying to iterate on the good parts while avoiding the mis‐

takes and dead ends of their ancestors.

—Björn Rabenstein (SoundCloud)

You can read more about Prometheus on its site, including instructions on how to

install and configure it for your environment.

While Prometheus itself is focused on the job of collecting and storing metrics, there

are other high-quality open source options for graphing, dashboarding, and alerting.

Grafana is a powerful and capable graphing engine for time series data (Figure 16-8).

The Prometheus project includes a tool called Alertmanager, which works well with

Prometheus but can also operate independently of it. Alertmanager’s job is to receive

alerts from various sources, including Prometheus servers, and process them (see

“Alerting on Metrics” on page 295).

The first step in processing alerts is to deduplicate them. Alertmanager can then

group alerts it detects to be related; for example, a major network outage might result

in hundreds of individual alerts, but Alertmanager can group all of these into a single

message, so that responders aren’t overwhelmed with pages.

Finally, Alertmanager will route the processed alerts to an appropriate notification

service, such as PagerDuty, Slack, or email.

Metrics Tools and Services | 299

 Figure 16-8. Grafana dashboard showing Prometheus data

Conveniently, the Prometheus metrics format is supported by a very wide range of

tools and services, and this de facto standard is now the basis for OpenMetrics, a

Cloud Native Computing Foundation project to produce a neutral standard format

for metrics data. But you don’t have to wait for OpenMetrics to become a reality; right

now, almost every metrics service, including Stackdriver, Cloudwatch, Datadog, and

New Relic, can import and understand Prometheus data.

Google Stackdriver

Although Stackdriver comes from Google, it’s not limited to Google Cloud: it also

works with AWS. Stackdriver can collect, graph, and alert on metrics and log data

from a variety of sources. It will autodiscover and monitor your cloud resources,

including VMs, databases, and Kubernetes clusters. Stackdriver brings all this data

into a central web console where you can create custom dashboards and alerts.

Stackdriver understands how to get operational metrics from such popular software

tools as Apache, Nginx, Cassandra, and Elasticsearch. If you want to include your

own custom metrics from your applications, you can use Stackdriver’s client library

to export whatever data you want.

If you’re in Google Cloud, Stackdriver is free for all GCP-related metrics; for custom

metrics, or metrics from other cloud platforms, you pay per megabyte of monitoring

data per month.

300 | Chapter 16: Metrics in Kubernetes

While not as flexible as Prometheus, or as sophisticated as more expensive tools such

as Datadog, Stackdriver is a great way to get started with metrics without having to

install or configure anything.

AWS Cloudwatch

Amazon’s own cloud monitoring product, Cloudwatch, has a similar feature set to

Stackdriver. It integrates with all AWS services, and you can export custom metrics

using the Cloudwatch SDK or command-line tool.

Cloudwatch has a free tier that allows you to gather basic metrics (such as CPU uti‐

lization for VMs) at five-minute intervals, a certain number of dashboards and

alarms, and so on. Over and above those you pay per metric, per dashboard, or per-

alarm, and you can also pay for high-resolution metrics (one-minute intervals) on a

per-instance basis.

Like Stackdriver, Cloudwatch is basic, but effective. If your primary cloud infrastruc‐

ture is AWS, Cloudwatch is a good place to start working with metrics, and for small

deployments it may be all you ever need.

Azure Monitor

Monitor is the Azure equivalent of Google’s Stackdriver or AWS Cloudwatch. It collects logs and metrics data from all your Azure resources, including Kubernetes clus‐

ters, and allows you to visualize and alert on it.

Datadog

In comparison to the cloud providers’ built-in tools like Stackdriver and Cloudwatch,

Datadog is a very sophisticated and powerful monitoring and analytics platform. It

offers integrations for over 250 platforms and services, including all the cloud serv‐

ices from major providers, and popular software such as Jenkins, Varnish, Puppet,

Consul, and MySQL.

Datadog also offers an application performance monitoring (APM) component,

designed to help you monitor and analyze how your applications are performing.

Whether you use Go, Java, Ruby, or any other software platform, Datadog can gather

metrics, logs, and traces from your software, and answer questions for you like:

• What is the user experience like for a specific, individual user of my service?

• Who are the 10 customers who see the slowest responses on a particular end‐

point?

• Which of my various distributed services are contributing to the overall latency

of requests?

Metrics Tools and Services | 301

Together with the usual dashboarding (see Figure 16-9) and alerting features (auto‐

matable via the Datadog API and client libraries, including Terraform), Datadog also

provides features like anomaly detection, powered by machine learning.

 Figure 16-9. Datadog dashboard

As you’d expect, Datadog is also one of the more expensive monitoring services avail‐

able, but if you’re serious about observability and you have a complex infrastructure

with performance-critical applications, the cost may well be worth it.

You can read more about Datadog at the website.

New Relic

New Relic is a very well established and widely used metrics platform focused on

application performance monitoring (APM). Its chief strength is in diagnosing per‐

formance problems and bottlenecks inside applications and distributed systems (see

Figure 16-10). However, it also offers infrastructure metrics and monitoring, alerting,

software analytics, and everything else you’d expect.

302 | Chapter 16: Metrics in Kubernetes

 Figure 16-10. New Relic APM dashboard

As with any enterprise-grade service, expect to pay a good deal for New Relic moni‐

toring, especially at scale. If you’re in the market for a premium corporate metrics

platform, you’ll probably be looking either at New Relic (slightly more application-

focused) or Datadog (slightly more infrastructure focused). Both also offer good

infrastructure as code support; for example, you can create monitoring dashboards

and alerts for both New Relic and Datadog using official Terraform providers.

Summary

 Measure twice, cut once is a favorite saying of many engineers. In the cloud native

world, without proper metrics and observability data it’s very difficult to know what’s

going on. On the other hand, once you open the metrics floodgates, too much infor‐

mation can be just as useless as too little.

The trick is to gather the right data in the first place, process it in the right way, use it

to answer the right questions, visualize it in the right way, and use it to alert the right

people at the right time about the right things.

Summary | 303

If you forget everything else in this chapter, remember this:

• Focus on the key metrics for each service: requests, errors, and duration (RED).

For each resource: utilization, saturation, and errors (USE).

• Instrument your apps to expose custom metrics, both for internal observability,

and for business KPIs.

• Useful Kubernetes metrics include, at the cluster level, the number of nodes, Pods

per node, and resource usage of nodes.

• At the deployment level, track deployments and replicas, especially unavailable

replicas, which might indicate a capacity problem.

• At the container level, track resource usage per container, liveness/readiness

states, restarts, network traffic, and network errors.

• Build a dashboard for each service, using a standard layout, and a master infor‐

mation radiator that reports the vital signs of the whole system.

• If you alert on metrics, alerts should be urgent, important, and actionable. Alert

noise creates fatigue and damages morale.

• Track and review the number of urgent pages your team receives, especially

wake-ups and weekends.

• The de facto standard metrics solution in the cloud native world is Prometheus,

and almost everything speaks the Prometheus data format.

• Third-party managed metrics services include Google Stackdriver, Amazon

Cloudwatch, Datadog, and New Relic.

304 | Chapter 16: Metrics in Kubernetes

Afterword

There is nothing more difficult to take in hand, more perilous to conduct, or more

uncertain in its success, than to take the lead in the introduction of a new order of

things.

—Niccolò Machiavelli

Well, that was quite a ride. We’ve covered a lot in this book, but everything we’ve

included has been determined by one simple principle: we think you need to know it

if you’re using Kubernetes in production.

They say an expert is just somebody who’s one page ahead in the manual. It’s quite

likely that, if you’re reading this book, you will be the Kubernetes expert for your

organization, at least at first. We hope you’ll find this manual useful, but it’s only a

starting point.

Where to Go Next

You may find these resources useful, both for learning more about Kubernetes and

cloud native, and for keeping up with the latest news and developments:

 http://slack.k8s.io/

The official Kubernetes Slack organization. This is a good place to ask questions,

and chat with other users.

 https://discuss.kubernetes.io/

A public forum for discussing all things Kubernetes.

 https://kubernetespodcast.com/

A weekly podcast put together by Google. Episodes usually run about 20 minutes

and cover weekly news and usually interview someone involved with Kubernetes.

305

 https://github.com/heptio/tgik

TGIK8s is a weekly live video stream, started by Joe Beda at Heptio. The format

usually involves about an hour of live demoing something in the Kubernetes eco‐

system. All videos are archived and available to watch on-demand.

Not to be left out, we have a blog associated with this book that you may like to read.

Check in every so often to see the latest news, updates, and blog posts about Cloud

Native DevOps.

Here are some email newsletters you might like to subscribe to, covering topics like

software development, security, DevOps, and Kubernetes:

• KubeWeekly (curated by the CNCF)

• SRE Weekly

• DevOps Weekly

• DevOps’ish

• Security Newsletter

Welcome Aboard

We learn nothing from being right.

—Elizabeth Bibesco

Your first priority on your Kubernetes journey should be to spread your expertise as

widely as you can—and to learn as much as you can from others. None of us knows

everything, but everybody knows something. Together, we just might figure things

out.

And don’t be afraid to experiment. Make your own demo app, or borrow ours, and

try things with it that you’re likely to need in production. If everything you do works

perfectly, then you’re not experimenting enough. Real learning comes from failures,

and from trying to figure out what’s wrong and fix them. The more you fail, the more

you learn.

To the extent that we’ve learned anything about Kubernetes, it’s because we’ve failed a

lot. We hope you will too. Have fun!

306 | Afterword

Index

A

Azure Monitor, 301

access control, 199-204

Azure Pipelines, 250

ACI (Azure Container Instances), 51

admission controller, 169

B

AKS (Azure Kubernetes Service), 43

b64enc, 228

alerting, 295

backups, 206-211

Alertmanager, 299

bare-metal servers, Kubernetes on, 49

aliases, 111, 124

base64

allowPrivilegeEscalation, 143

encoding and decoding, 189

Alpine Linux, 26

in Helm charts, 228

Amazon Cloudwatch, 301

Borg, 11

Anchore Engine, 205

Borgmon, 299

annotations

BusyBox, 124

owner, 86

versus labels, 156

C

Ansible, 234

application deployment

cAdvisor, 283

building manifests with Helm, 219-223

capabilities, 144

deploying Helm charts, 223-228

capacity planning, 96

managing multiple charts with Helmfile,

CD (see continuous deployment (CD))

228-231

cert-manager, 173

manifest management tools, 231-235

Certified Kubernetes, 103

metrics for, 285

Certified Kubernetes Administrator (CKA), 104

Application Performance Monitoring, 301

chaos testing, 107

Aqua, 205

chaoskube, 108

audit logging, 107

checksum/config, 187

autoscaling

circuit breaker pattern, 275

benefits of, 102

CKA (Certified Kubernetes Administrator), 104

nodes, 42

Clair, 204

replicas, 167

Click, 129

Vertical Pod Autoscaler, 84

client-go, 131

Azure Container Instances (ACI), 51

Cloud Build

Azure Event Grid, 51

benefits of, 249

Azure Kubernetes Service (AKS), 43

CD example, 251

pipeline, 252

307

cloud functions, 14

ContainerCreating status, 30

Cloud Native Computing Foundation (CNCF),

containers (see also Docker)

15, 103

arguments, 184

cloud native, definition of term, 14

building, 25

cloud-controller-manager, 34

capabilities, 144

Cloudwatch, 301

container security, 141-146

cluster balancing, 91

entrypoint, 135

cluster-admin role, 201-203

image identifier, 137

clusterIP, 165

image pull secrets, 149

ClusterRoleBinding, 201

internals, 134

clusters

managing container life cycles, 72-77

administration overhead, 39

manifest, 136

architecture, 33

metrics for, 284

autoscaling, 42, 102

minimal, 26

backing up cluster state, 207-211

multi-stage builds, 26

conformance checking, 102-105

origins, 7

federation, 97

processes, 135

health metrics, 283

ready status, 213

maximum size, 97

restart policy, 149

minimum size, 96

runtime, 35

monitoring cluster status, 211-217

tag, 138

multiple, 98

tools and utilities for, 119-126

node types, 35

user, 142

optimizing cluster costs, 81-92

Containership Kubernetes Engine, 44

scaling, 101

contexts, 127-130

self-hosted, 37

continuous deployment (CD)

setup tools, 44

Cloud Build pipeline, 251-260

sizing, 95

introduction to, 247

validation and auditing, 105-109

tools for, 248-251

CNCF (Cloud Native Computing Foundation),

Contour, 174

15, 103

control plane

Codefresh, 250

failure, 36

completions, 166

purpose of, 34

Concourse, 249

status information, 211

config file

Copper, 106

creating from ConfigMap, 184

counters, 279

creating from Secret, 188

CPU utilization, 213

ConfigMap

CrashLoopBackOff, 213

creating config file from, 184

CreateContainerConfigError, 143

purpose of, 179

Cronjob, 167

setting command-line arguments from, 184

custom resource definition, 170

setting environment variables from, 181

updating Deployment on changes to, 187

D

configMapKeyRef, 182

DaemonSet, 164

configuration management, 7

Dashboard, 214

conformance testing

dashboards

benefits of, 103

for specific services, 293

using Sonobouy, 104

layout of, 291

container registry, 28

master dashboards, 292

308 | Index

Datadog, 301

benefits of, 42

debugging, 126

Fargate support, 51

Deployment objects

emptyDir, 147

describing, 55

encryption at rest, 190

introduction, 53

env, 141

listing, 55

envFrom, 183

manifest, 59

environment variables

restart policy, 54

benefits and drawbacks of, 140

deployments (see also application deployment)

creating from Secret, 187

blue/green, 241

setting from ConfigMap, 181

canary, 242

setting with Helm, 224

metrics for, 284

Envoy load balancer, 175

rainbow, 242

ErrImagePull status, 30

strategies for, 239-242

etcd, 34, 206

zero-downtime, 74, 239

Evans, Julia, 58

Descheduler, 92

eviction, 77

developer productivity engineering (DPE), 17

exec probe, 73

development workflow

deployment strategies, 239

F

development tools, 237-238

Fargate, 50

handling migrations with Helm, 243

federation, 97

DevOps, 3-7, 17-19

file probe, 75

dlv, 126

Flux, 251

DNS names, communicating with Services in

funtainers, 14

other namespaces, 79

Docker

commands

G

container run, 23, 29

garbage collection, 86

image build, 26

gauges, 279

image push, 29

Git

image tag, 28

clone command, 23

login, 28

installing, 23

installing, 22

SHA tags, 254

introduction, 22

Gitkube, 250

naming and tagging images, 27

GitLab CI, 250

version, 22

GitOps, 251

Docker Hub

GKE (Google Kubernetes Engine), 41, 214

authentication, 28

GnuPG, 195

Docker ID creation, 28

Go language, introduction to, 24

triggers and, 250

Go templates, 222

Dockerfile, introduction to, 25

Google Cloud Build, 249, 251-260

DPE (developer productivity engineering), 17

Google Kubernetes Engine (GKE)

Draft, 238

benefits of, 41

draining nodes, 88, 101

console, 214

Drone, 249

Google Stackdriver, 300

GPU, 100

E

Grafana, 299

gray failures, 266

edit role, 202

grpc, 74

Elastic Container Service for Kubernetes (EKS)

Index | 309

H

managing multiple charts with, 228

Hausenblas, Michael, 217

sync command, 230

healthz endpoint, 73

Heptio Kubernetes Subscription (HKS), 43

Helm

high availability

commands

configuring, 35

dependency update, 223

Google Kubernetes Engine, 41

init, 65

testing, 37

install, 66, 224

Hightower, Kelsey, 11, 45

list, 67

HKS (Heptio Kubernetes Service), 43

repo add, 226

Horizontal Pod Autoscaler, 167

repo index, 226

httpGet probe, 73

rollback, 225

status, 67

I

template, 254

IaaS (infrastructure as a service), 3

upgrade, 225

IBM Cloud Kubernetes Service, 43

version, 65

ImagePullBackOff status, 30

flags

imagePullPolicy, 140

--set, 225

imagePullSecrets, 149

--values, 224

information radiator, 293

hooks, 243, 244

infrastructure as a service (IaaS), 3

installing, 65

infrastructure as code, 6

introduction, 64

Ingress

managing secrets with Sops, 226

Contour, 174

release, 66

controller, 173

requirements.yaml, 223

nginx-ingress, 174

Tiller connection error, 65

rules, 172

Helm chart

TLS, 172

Chart.yaml, 220

Traefik, 174

contents, 220

initialDelaySeconds, 73

definition, 66

installation and management

installing and using, 64

cluster architecture, 33-37

layout, 65

clusterless container services, 50

quoting values, 223

Kubernetes installers, 44-47

release, 66

managed Kubernetes services, 41-43

repository, 66, 226

recommendations for, 47-49

template format, 221

self-hosting costs, 37-41

template syntax, 222

turnkey Kubernetes solutions, 44

templates, 221

instance group, 101

values.yaml, 220

instances

variables, 222

preemptible, 89

helm-monitor, 226

reserved, 88

helm.sh/hook, 243

spot, 89

helm.sh/hook-delete-policy, 244

IOPS, 85

helm.sh/hook-weight, 245

Istio, 174

helm.sh/resource-policy, 191

Helmfile

J

alternatives to, 231

chart metadata, 229

Jenkins, 248

contents, 228

Jobscleaning up, 88

310 | Index

completions field, 166

get, 30, 55

parallelism field, 166

get all, 63

jq, 115

get componentstatuses, 211

JSON, 114

get nodes, 63, 212

Jsonnet, 232

logs, 120

port-forward, 30, 121

K

run, 30, 56

K8Guard, 106

taint, 162

Kapitan, 232

top, 213

Keel, 251

contexts, 127

KMS (Key Management Service), 194-197

features, 63

Knative, 238

flags

kompose, 233

--all-namespaces, 212

kops, 45

--command, 124

KPIs, 282

--container, 120, 122

ksonnet, 231

--export, 118

kube-apiserver, 34

--follow, 120

kube-bench, 107

--restart, 123

kube-controller-manager, 34

--rm, 123

kube-hunter, 205

--selector, 112, 154

kube-job-cleaner, 88

--show-labels, 154

kube-lego, 173

--tail, 120

kube-monkey, 109

--watch, 115

kube-ops-view, 216

-h, 113

kube-proxy, 35

-it, 123

kube-ps1, 128

-o json, 114

kube-scheduler, 34

-o jsonpath, 115

kube-shell, 129

-o wide, 114

kube-state-metrics, 283

-o yaml, 118

kubeadm, 46

kubectx, 128

kubectl

kubed-sh, 130

abbreviated flags, 112

Kubeformation, 46

abbreviated resource types, 112

kubelet, 35, 58

auto-completion, 113

kubens, 128

automation, 131

Kubernetes

commands

application deployment, 219-235

apply, 60

backups and restoration, 206-211

attach, 121

benefits of, 11-14

cluster-info, 127

cluster monitoring, 211-217

config, 127

cluster operation, 95-109

create, 116, 180

configuration, 179-187

delete, 57, 116

container management, 133-151

delete -f, 63

continuous deployment, 247-261

describe, 55, 63, 116

development workflow, 237-246

diff, 117, 119

first steps, 21-31

drain, 101

installation and management, 33-52

edit, 116

Kubernetes objects, 53-68

exec, 122

metrics, 277-304

explain, 114

observability and monitoring, 263-276

Index | 311

origins of, 11

maxUnavailable, 76, 240

Pod management, 153-177

median, 287

resource management, 69-94

memory utilization, 213

Secrets, 187-197

metrics

security, 199-205

alerting, 295

tools and utilities, 111-132

application, 285

Kubernetes Certified Service Provider, 104

averages, 287

Kubernetes The Hard Way (Hightower), 45

business, 282

Kubespray, 45

cluster health, 284

kubespy, 121

containers, 284

kubesquash, 126

dashboards, 291

kubeval, 234, 254

deployments, 284

kustomize, 233

introduction, 268

percentiles, 288

L

radiator, 293

labels

RED pattern, 280

Service matching, 62

runtime, 286

working with, 153-157

tools and services, 298-303

Lambda, 14

USE pattern, 281

latest tag, 138

uses, 277

LimitRange, 80

MicroScanner, 205

limits, resource, 71

microservices, 16

liveness probe, 72, 275

Microsoft Flow, 51

load balancer, 174

migrations, 243

logs

minAvailable, 76

audit logging, 107

Minikube, 31

information included in, 266

minimal containers, 72

limitations, 267

minReadySeconds, 75

viewing, 120, 130

monitoring

black-box, 263, 272

M

definition, 263

internal health checks, 274-275

managed services

limitations, 265

Amazon Elastic Container Service for

Kubernetes, 42

Azure Kubernetes Service, 43

N

benefits of, 41

namespaces

cluster autoscaling, 42

default, 78

Google Kubernetes Engine, 41

kube-system, 78

Heptio Kubernetes Subscription, 43

tools and utilities for, 126-128

IBM Cloud Kubernetes Service, 43

using, 77

OpenShift, 43

network policies, 79

recommendations for, 48

New Relic, 302

manifest

nginx-ingress, 174

applying, 60

nines of uptime, 265

introduction, 59

node affinities, 90, 157

templating, 221

node-problem-detector, 216

validating, 234

nodes

master nodes, minimum number, 36

draining, 101

maxSurge, 240

GPU, 100

312 | Index

instance types, 88, 99

principle of least privilege, 141

sizing, 84, 99

probes

status, 212

/healthz endpoint, 73

nodeSelectorTerms, 158

exec, 73

file, 75

O

gRPC, 74

observability

httpGet, 73

culture of, 271

initialDelaySeconds, 73

definition, 270

liveness, 72

distinction from monitoring, 271

periodSeconds, 73

monitoring in Kubernetes, 272-275

readiness, 74

pipeline for, 271

redirect, 75

Omega, 11

tcpSocket, 73

on-call, tempering with mercy, 296

Prometheus

OpenMetrics, 300

alternataives to, 299

OpenShift, 43

benefits of, 298

operator, 170

Borgmon tool and, 299

orchestration, 10

metrics format, 300

overcommitting resources, 71

pull monitoring in, 298

Puppet Kubernetes module, 46

Pparallelism, 166

R

percentiles, 288

Rancher Kubernetes Engine (RKE), 46

periodSeconds, 73

RBAC (Role-Based Acces Control), 200-204

permissions, 199-201

readiness probe, 74, 275

persistent volumes, 148

readOnlyRootFilesystem, 143

PersistentVolumeClaim, 149

reconciliation loop, 57

Platform-as- a-Service (PaaS), 43

Recreate, 239-240

Pod objects

RED pattern, 280

affinity, 159

replicas

concept, 133

changing number of, 225

introduction to, 55

sizing, 82

multiple containers in, 136

ReplicaSet objects, 56

Pod management, 153-177

replication, 206

replicas, 225

requiredDuringSchedulingIgnoredDuringExe‐

security context, 145

cution, 157

service account, 146

ResourceQuota, 79

template, 55

resources

PodDisruptionBudget, 76, 101

limits, 71, 80, 83

PodPreset, 169

requests, 70, 83

PodSecurityPolicy, 145

stranded, 84

port forwarding

tools and utilities for, 116-119

explanation, 27

units, 70

via Service, 62

restartPolicy, 149

with Docker, 28

Rice, Liz, 135, 217

with kubectl, 30

RKE (Rancher Kubernetes Engine), 46

PowerfulSeal, 109

Role-Based Access Control (RBAC), 200-204

preferredDuringSchedulingIgnoredDuringExe‐

RoleBinding, 201

cution, 157

RollingUpdate, 239

Index | 313

run less software philosophy, 47

purpose of, 138

runAsNonRoot, 142

taints, 162

runAsUser, 142

Tarmak, 46

Running status, 30

tcpSocket probe, 73

Telepresence, 238

S

Terminating status, 58

scheduler

time series, 278

introduction, 58

TK8, 45

kube-scheduler, 34

TLS (Transport Layer Security)

resource evaluation and, 69

automatic certificate requests, 173

secretKeyRef, 188

termination, 172

Secrets

tolerations, 162

creating config file from, 188

tools and utilities

encrypting with Sops, 195-196

building your own, 130

management strategies, 191-194

contexts and namespaces, 126-128

opaque representation, 189

kubectl (see kubectl)

purpose of, 187

Kubernetes shells and tools, 129

setting environment variables from, 187

working with containers, 119-126

security, 199-205, 254

working with Resources, 116-119

securityContext, 145

tracing, 269

selectors, 154

Traefik, 174

self-hosting, 37

Transport Layer Security (TLS)

service accounts, application default, 203

automatic certificate requests, 173

Service objects

termination, 172

DNS names and, 79

triggers, in Cloud Build, 255

headless, 165

turnkey services, 44, 49

introduction, 60

manifest, 61

U

matching labels, 62

undifferentiated heavy lifting, 47

port forwarding, 62

uptime, 265

serviceAccountName, 146

Uptime Robot, 274

setuid binaries, 143

USE pattern, 281

SHA tags, 254

Skaffold, 237

V

Sonobuoy, 104

validation and auditing, 105-107

Sops

Vault, 193

encrypting secrets with, 194-197

Velero

with Helm charts, 226

commands

Spinnaker, 249

backup create, 209

SRE, 18

backup download, 209

Stackdriver, 300

backup get, 209

Stackpoint, 44

restore, 209

StatefulSet, 165

schedule create, 210

Stern, 130

schedule get, 210

substitutions, in Cloud Build, 259

configuring, 208

function of, 208

T

vendor lock-in, 48

tags

Vertical Pod Autoscaler, 84

default (latest), 138

view role, 202

314 | Index

volumes, 147-149

for soft affinities, 158

emptyDir, 147

helm.sh/hook-weight property, 244

persistent, 148

purpose of, 159

soft anti-affinities, 161

W

worker nodes

Weave Scope, 216

components, 35

weights

failure, 36

Index | 315

About the Authors

John Arundel is a consultant with 30 years of experience in the computer industry.

He is the author of several technical books, and works with many companies around

the world consulting on cloud native infrastructure and Kubernetes. Off the clock, he

is a keen surfer, a competitive rifle and pistol shooter, and a decidedly uncompetitive

piano player. He lives in a fairytale cottage in Cornwall, England.

Justin Domingus is an operations engineer working in DevOps environments with

Kubernetes and cloud technologies. He enjoys the outdoors, learning new things, cof‐

fee, crabbing, and computers. He lives in Seattle, Washington, with a wonderful cat

and an even more wonderful wife and best friend, Adrienne.

Colophon

The animal on the cover of Cloud Native DevOps with Kubernetes is the Ascension

frigatebird (Fregata aquila), a seabird found only on Ascension Island and nearby

Boatswain Bird Island in the South Atlantic Ocean, roughly between Angola and Bra‐

zil. The eponymous bird’s home island is named after the day it was discovered,

Ascension Day on the Christian calendar.

With a wingspan of over 6.5 feet (2 meters) but weighing less than three pounds (1.25

kilograms), the Ascension frigatebird glides effortlessly over the ocean, catching fish

that swim near the surface, especially flying fish. It sometimes feeds on squid, baby

turtles, and prey stolen from other birds. Its feathers are black and glossy, with hints

of green and purple. The male is distinguished by a bright red gular sac, which it

inflates when seeking a mate. The female has slightly duller feathers, with patches of

brown and sometimes white on the underside. Like other frigatebirds, it has a hooked

bill, forked tail, and sharply pointed wings.

The Ascension frigatebird breeds on the rocky outcroppings of its island habitat.

Instead of building a nest, it digs a hollow in the ground and protects it with feathers,

pebbles, and bones. The female lays a single egg, and both parents care for the chick

for six or seven months before it finally learns to fly. Since breeding success is low and

habitat is limited, the species is usually classified as Vulnerable.

Ascension Island was first settled by the British for military purposes in the early 19th

century. Today the island is home to tracking stations for NASA and the European

Space Agency, a relay station for the BBC World Service, and one of the world’s four

GPS antennas. During most of the 19th and 20th centuries, frigatebirds were limited

to breeding on small, rocky Boatswain Bird Island off Ascension’s coast, since feral

cats were killing their chicks. In 2002, the Royal Society for the Protection of Birds

launched a campaign to eliminate the cats from the island, and a few years later, friga‐

tebirds began to nest on Ascension Island once again.

Many of the animals on O’Reilly covers are endangered; all of them are important to

the world. To learn more about how you can help, go to animals.oreil y.com.

The cover illustration is by Karen Montgomery, based on a black-and-white engrav‐

ing from Cassel’s Natural History. The cover fonts are Gilroy and Guardian. The text

font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the

code font is Dalton Maag’s Ubuntu Mono.

Document Outline

	Cover

	name of event

	Copyright

	Table of Contents

	Foreword by NGINX

	Foreword by Ihor Dvoretskyi

	Preface

	Conventions Used in This Book

	Using Code Examples

	O’Reilly Safari

	How to Contact Us

	Acknowledgments

	Chapter 1. Revolution in the Cloud

	The Creation of the Cloud

	Buying Time

	Infrastructure as a Service

	The Dawn of DevOps

	Nobody Understands DevOps

	The Business Advantage

	Infrastructure as Code

	Learning Together

	The Coming of Containers

	The State of the Art

	Thinking Inside the Box

	Putting Software in Containers

	Plug and Play Applications

	Conducting the Container Orchestra

	Kubernetes

	From Borg to Kubernetes

	What Makes Kubernetes So Valuable?

	Will Kubernetes Disappear?

	Kubernetes Doesn’t Do It All

	Cloud Native

	The Future of Operations

	Distributed DevOps

	Some Things Will Remain Centralized

	Developer Productivity Engineering

	You Are the Future

	Summary

	Chapter 2. First Steps with Kubernetes

	Running Your First Container

	Installing Docker Desktop

	What Is Docker?

	Running a Container Image

	The Demo Application

	Looking at the Source Code

	Introducing Go

	How the Demo App Works

	Building a Container

	Understanding Dockerfiles

	Minimal Container Images

	Running docker image build

	Naming Your Images

	Port Forwarding

	Container Registries

	Authenticating to the Registry

	Naming and Pushing Your Image

	Running Your Image

	Hello, Kubernetes

	Running the Demo App

	If the Container Doesn’t Start

	Minikube

	Summary

	Chapter 3. Getting Kubernetes

	Cluster Architecture

	The Control Plane

	Node Components

	High Availability

	The Costs of Self-Hosting Kubernetes

	It’s More Work Than You Think

	It’s Not Just About the Initial Setup

	Tools Don’t Do All the Work for You

	Kubernetes Is Hard

	Administration Overhead

	Start with Managed Services

	Managed Kubernetes Services

	Google Kubernetes Engine (GKE)

	Cluster Autoscaling

	Amazon Elastic Container Service for Kubernetes (EKS)

	Azure Kubernetes Service (AKS)

	OpenShift

	IBM Cloud Kubernetes Service

	Heptio Kubernetes Subscription (HKS)

	Turnkey Kubernetes Solutions

	Stackpoint

	Containership Kubernetes Engine (CKE)

	Kubernetes Installers

	kops

	Kubespray

	TK8

	Kubernetes The Hard Way

	kubeadm

	Tarmak

	Rancher Kubernetes Engine (RKE)

	Puppet Kubernetes Module

	Kubeformation

	Buy or Build: Our Recommendations

	Run Less Software

	Use Managed Kubernetes if You Can

	But What About Vendor Lock-in?

	Use Standard Kubernetes Self-Hosting Tools if You Must

	When Your Choices Are Limited

	Bare-Metal and On-Prem

	Clusterless Container Services

	Amazon Fargate

	Azure Container Instances (ACI)

	Summary

	Chapter 4. Working with Kubernetes Objects

	Deployments

	Supervising and Scheduling

	Restarting Containers

	Querying Deployments

	Pods

	ReplicaSets

	Maintaining Desired State

	The Kubernetes Scheduler

	Resource Manifests in YAML Format

	Resources Are Data

	Deployment Manifests

	Using kubectl apply

	Service Resources

	Querying the Cluster with kubectl

	Taking Resources to the Next Level

	Helm: A Kubernetes Package Manager

	Installing Helm

	Installing a Helm Chart

	Charts, Repositories, and Releases

	Listing Helm Releases

	Summary

	Chapter 5. Managing Resources

	Understanding Resources

	Resource Units

	Resource Requests

	Resource Limits

	Keep Your Containers Small

	Managing the Container Life Cycle

	Liveness Probes

	Probe Delay and Frequency

	Other Types of Probes

	gRPC Probes

	Readiness Probes

	File-Based Readiness Probes

	minReadySeconds

	Pod Disruption Budgets

	Using Namespaces

	Working with Namespaces

	What Namespaces Should I Use?

	Service Addresses

	Resource Quotas

	Default Resource Requests and Limits

	Optimizing Cluster Costs

	Optimizing Deployments

	Optimizing Pods

	Vertical Pod Autoscaler

	Optimizing Nodes

	Optimizing Storage

	Cleaning Up Unused Resources

	Checking Spare Capacity

	Using Reserved Instances

	Using Preemptible (Spot) Instances

	Keeping Your Workloads Balanced

	Summary

	Chapter 6. Operating Clusters

	Cluster Sizing and Scaling

	Capacity Planning

	Nodes and Instances

	Scaling the Cluster

	Conformance Checking

	CNCF Certification

	Conformance Testing with Sonobuoy

	Validation and Auditing

	K8Guard

	Copper

	kube-bench

	Kubernetes Audit Logging

	Chaos Testing

	Only Production Is Production

	chaoskube

	kube-monkey

	PowerfulSeal

	Summary

	Chapter 7. Kubernetes Power Tools

	Mastering kubectl

	Shell Aliases

	Using Short Flags

	Abbreviating Resource Types

	Auto-Completing kubectl Commands

	Getting Help

	Getting Help on Kubernetes Resources

	Showing More Detailed Output

	Working with JSON Data and jq

	Watching Objects

	Describing Objects

	Working with Resources

	Imperative kubectl Commands

	When Not to Use Imperative Commands

	Generating Resource Manifests

	Exporting Resources

	Diffing Resources

	Working with Containers

	Viewing a Container’s Logs

	Attaching to a Container

	Watching Kubernetes Resources with kubespy

	Forwarding a Container Port

	Executing Commands on Containers

	Running Containers for Troubleshooting

	Using BusyBox Commands

	Adding BusyBox to Your Containers

	Installing Programs on a Container

	Live Debugging with kubesquash

	Contexts and Namespaces

	kubectx and kubens

	kube-ps1

	Kubernetes Shells and Tools

	kube-shell

	Click

	kubed-sh

	Stern

	Building Your Own Kubernetes Tools

	Summary

	Chapter 8. Running Containers

	Containers and Pods

	What Is a Container?

	What Belongs in a Container?

	What Belongs in a Pod?

	Container Manifests

	Image Identifiers

	The latest Tag

	Container Digests

	Base Image Tags

	Ports

	Resource Requests and Limits

	Image Pull Policy

	Environment Variables

	Container Security

	Running Containers as a Non-Root User

	Blocking Root Containers

	Setting a Read-Only Filesystem

	Disabling Privilege Escalation

	Capabilities

	Pod Security Contexts

	Pod Security Policies

	Pod Service Accounts

	Volumes

	emptyDir Volumes

	Persistent Volumes

	Restart Policies

	Image Pull Secrets

	Summary

	Chapter 9. Managing Pods

	Labels

	What Are Labels?

	Selectors

	More Advanced Selectors

	Other Uses for Labels

	Labels and Annotations

	Node Affinities

	Hard Affinities

	Soft Affinities

	Pod Affinities and Anti-Affinities

	Keeping Pods Together

	Keeping Pods Apart

	Soft Anti-Affinities

	When to Use Pod Affinities

	Taints and Tolerations

	Pod Controllers

	DaemonSets

	StatefulSets

	Jobs

	Cronjobs

	Horizontal Pod Autoscalers

	PodPresets

	Operators and Custom Resource Definitions (CRDs)

	Ingress Resources

	Ingress Rules

	Terminating TLS with Ingress

	Ingress Controllers

	Istio

	Envoy

	Summary

	Chapter 10. Configuration and Secrets

	ConfigMaps

	Creating ConfigMaps

	Setting Environment Variables from ConfigMaps

	Setting the Whole Environment from a ConfigMap

	Using Environment Variables in Command Arguments

	Creating Config Files from ConfigMaps

	Updating Pods on a Config Change

	Kubernetes Secrets

	Using Secrets as Environment Variables

	Writing Secrets to Files

	Reading Secrets

	Access to Secrets

	Encryption at Rest

	Keeping Secrets

	Secrets Management Strategies

	Encrypt Secrets in Version Control

	Store Secrets Remotely

	Use a Dedicated Secrets Management Tool

	Recommendations

	Encrypting Secrets with Sops

	Introducing Sops

	Encrypting a File with Sops

	Using a KMS Backend

	Summary

	Chapter 11. Security and Backups

	Access Control and Permissions

	Managing Access by Cluster

	Introducing Role-Based Access Control (RBAC)

	Understanding Roles

	Binding Roles to Users

	What Roles Do I Need?

	Guard Access to Cluster-Admin

	Applications and Deployment

	RBAC Troubleshooting

	Security Scanning

	Clair

	Aqua

	Anchore Engine

	Backups

	Do I Need to Back Up Kubernetes?

	Backing Up etcd

	Backing Up Resource State

	Backing Up Cluster State

	Large and Small Disasters

	Velero

	Monitoring Cluster Status

	kubectl

	CPU and Memory Utilization

	Cloud Provider Console

	Kubernetes Dashboard

	Weave Scope

	kube-ops-view

	node-problem-detector

	Further Reading

	Summary

	Chapter 12. Deploying Kubernetes Applications

	Building Manifests with Helm

	What’s Inside a Helm Chart?

	Helm Templates

	Interpolating Variables

	Quoting Values in Templates

	Specifying Dependencies

	Deploying Helm Charts

	Setting Variables

	Specifying Values in a Helm Release

	Updating an App with Helm

	Rolling Back to Previous Versions

	Creating a Helm Chart Repo

	Managing Helm Chart Secrets with Sops

	Managing Multiple Charts with Helmfile

	What’s in a Helmfile?

	Chart Metadata

	Applying the Helmfile

	Advanced Manifest Management Tools

	ksonnet

	Kapitan

	kustomize

	kompose

	Ansible

	kubeval

	Summary

	Chapter 13. Development Workflow

	Development Tools

	Skaffold

	Draft

	Telepresence

	Knative

	Deployment Strategies

	Rolling Updates

	Recreate

	maxSurge and maxUnavailable

	Blue/Green Deployments

	Rainbow Deployments

	Canary Deployments

	Handling Migrations with Helm

	Helm Hooks

	Handling Failed Hooks

	Other Hooks

	Chaining Hooks

	Summary

	Chapter 14. Continuous Deployment in Kubernetes

	What Is Continuous Deployment?

	Which CD Tool Should I Use?

	Jenkins

	Drone

	Google Cloud Build

	Concourse

	Spinnaker

	GitLab CI

	Codefresh

	Azure Pipelines

	CD Components

	Docker Hub

	Gitkube

	Flux

	Keel

	A CD Pipeline with Cloud Build

	Setting Up Google Cloud and GKE

	Forking the Demo Repository

	Introducing Cloud Build

	Building the Test Container

	Running the Tests

	Building the Application Container

	Validating the Kubernetes Manifests

	Publishing the Image

	Git SHA Tags

	Creating the First Build Trigger

	Testing the Trigger

	Deploying from a CD Pipeline

	Creating a Deploy Trigger

	Optimizing Your Build Pipeline

	Adapting the Example Pipeline

	Summary

	Chapter 15. Observability and Monitoring

	What Is Observability?

	What Is Monitoring?

	Black-Box Monitoring

	What Does “Up” Mean?

	Logging

	Introducing Metrics

	Tracing

	Observability

	The Observability Pipeline

	Monitoring in Kubernetes

	External Black-Box Checks

	Internal Health Checks

	Summary

	Chapter 16. Metrics in Kubernetes

	What Are Metrics, Really?

	Time Series Data

	Counters and Gauges

	What Can Metrics Tell Us?

	Choosing Good Metrics

	Services: The RED Pattern

	Resources: The USE Pattern

	Business Metrics

	Kubernetes Metrics

	Analyzing Metrics

	What’s Wrong with a Simple Average?

	Means, Medians, and Outliers

	Discovering Percentiles

	Applying Percentiles to Metrics Data

	We Usually Want to Know the Worst

	Beyond Percentiles

	Graphing Metrics with Dashboards

	Use a Standard Layout for All Services

	Build an Information Radiator with Master Dashboards

	Dashboard Things That Break

	Alerting on Metrics

	What’s Wrong with Alerts?

	On-call Should Not Be Hell

	Urgent, Important, and Actionable Alerts

	Track Your Alerts, Out-of-Hours Pages, and Wake-ups

	Metrics Tools and Services

	Prometheus

	Google Stackdriver

	AWS Cloudwatch

	Azure Monitor

	Datadog

	New Relic

	Summary

	Afterword

	Where to Go Next

	Welcome Aboard

	Index

	About the Authors

	Colophon

index-118_2.png
on

Node 1 New Node 2

index-112_2.png

index-325_1.png

index-316_1.png

index-35_1.png

index-136_1.png

index-117_1.png

index-117_2.png

index-24_3.png

index-147_1.png

index-244_1.png
B <[| > <1 [ureany >

i|[|nm con
moon| || motoon

Hu EDD % m

DREE]
s70sesena
S

comecon-sanple-ca 113
e SN

Loiet
il e
B I arirri
Beinn) QR ey
TE— i
[T Lt s
o—n e
! i
[t
ez
Tealestes: 1o my
T

[

index-24_1.png

index-61_1.png
Kubernetes Architecture

Users Control Plane Nodes

apiserver kubelet
scheduler kubelet

controllers kubelet

cover_image.jpg
-

Cloud-Native-

» Devops-with- 9

Kubernetes-full-
book

index-238_1.png

index-175_1.png

index-130_1.png
certified

3

kubernetes

index-316_2.png
2500 - -

2000 - -

1500 - -

1000 - -

50 - -

index-90_1.png

index-29_1.png

index-1_1.jpg
OREILLY 4’

Cloud Native ¥
DevOps with
Kubernetes

Building, Deploying, and
Scaling Modern Applications

in the Cloud

John Arundel &
Justin Domingus

index-115_1.png

index-166_1.png

index-25_1.png
3 Safari

index-84_1.png
Deployment

Replica Set Replica Set Replica Set

index-107_1.png

index-108_2.png

index-114_2.png

index-319_1.png
ROy
JL'L f

b

index-170_1.png

index-283_1.png
Trigger settings

Source: GitHub Repository: https//github.com/domingusj/demo L7

Name (Optional)

build

Trigger type
® Branch
Tag

Branch (regex)

Matches 2 branches: master, john

Included files filter (glob) (Oztionz)
Changes affecting at least one included file will trigger builds

glob pattem example: src/*

Ignored files filter (glob) (Optional)
Changes only affecting ignored files won' trigger builds

glob pattern example: gitignore

2 Hide included and ignored files filters

Build configuration
Dockerfile
Specify the path within the Git repo

@ cloudbuild yaml
Specify the path to a Cloud Bulld configuration fle in the Git repo ~ Learn more

cloudbuild.yaml location

yami|

index-230_1.png

index-67_2.png

index-92_1.png

index-88_1.png
Services

index-99_1.png

index-48_1.png

index-327_1.png
o

BNt . 0 7B O
-

[P e ———— -

A e BB

o

R v

index-106_1.png

index-125_2.png

index-2_1.png
N+

Try NGINX Plus
and NGINX WAF
free for 30 days

Get high-performance application delivery for
microservices. NGINX Plus is a software load
balancer, web server, and content cache.
The NGINX Web Application Firewall (WAF)
protects applications against sophisticated
Layer 7 attacks.

o

Reduced Complexity Exclusive Featurs NGINX WAF

Download at nainx.com/freetrial

index-229_1.png

index-62_1.png
Kubernetes Master

I Rube-conlrlle oud-canirale
manager

Coud > Cloud connecto
manager

kubclet. Kubelet. kubelet

ubeprory] [kube-proxy] [kube-procy

index-198_1.png

index-305_1.png
Memory
Aug 2,2018 2:51 PM

1.50G

0.75G6

0 gke-kBs-cluster-1-n1-standard-2-pool-2ac3f6e1-dwtv:
1.303G6

index-172_1.png

index-102_2.png

index-242_1.png

index-132_1.png

index-241_1.png
<& Kubernetes clusters /oI W DELETE £ CONNECT

@ K8s-cluster1

Detals Storage Nodes

Cluster
Master version 1.10.2.gke.1 Upgrade available
Endpoint 35.185.228.127 ‘Show credentials
Cliont cortificate Enabled

Kubernetes alpha features Disabled

Gurrent total size 7
Master zone uswest-a
Node zones uswesti-a
uswestl-b
uswesti-c
Network network

Sudnet subnet3

index-128_1.png

index-119_1.png
Node 1 New Node 2

index-230_2.png

index-118_1.png
(=] (=]

Node 1

(][]

Node 2

index-67_1.png

index-113_1.png

index-243_1.png

index-191_1.png

index-155_1.png

index-104_1.png

index-162_2.png

index-124_1.png

index-126_1.png

index-234_1.png

index-330_1.png

index-233_1.png

index-168_1.png

index-329_1.png
'328. 868. 344. 713.,

index-127_1.png

index-109_1.png

index-112_1.png

index-124_2.png

index-321_1.png
et et vome.

asivobme i [r—

index-258_1.png

index-125_1.png

index-94_1.png

index-77_1.png

index-1_2.jpg
OREILLY 4’

Cloud Native ¥
DevOps with
Kubernetes

Building, Deploying, and
Scaling Modern Applications

in the Cloud

John Arundel &
Justin Domingus

index-24_2.png

index-129_1.png

index-156_1.png
kube-shell> rubectl gt pofe o ueier

\ubo-syster User: minikube [F9] In-line help: ON [F1e] Exit

index-114_1.png

index-129_2.png

index-56_1.png
Kubernetes

T mAeEs @ &

General File Sharing Disk Advanced Proxies Daemon Kuberetes. Reset

Enable Kubernetes

art a Kubernetes single-node cluster when starting Docker and set
bernetes as Docker orchestrator

Show system containers (advanced)

Show ki

rnetes internal containers when using Docker

® Dockeris running © Kubernetes starting.

index-102_1.png

index-281_1.png

index-146_1.png

index-49_1.png

index-267_1.png

index-317_1.png
2500 -

2000 -

1500 -

1000 -

° ’ \//\ /\/\/\ /\f \/\/\/\A

index-108_1.png

index-132_2.png
‘CONFORMANCE RESULTS

Tests R 125
o Fatwes 1

ettt el e g Corfrorcl

G s, it ek ol ot

index-131_1.png

index-31_1.png
nl(s BW

o P

|
-.*l - ,-n"

v
. —

b -
OPS PROBLEMNOW

==========

index-110_1.png

index-232_1.png

index-162_1.png

index-145_1.png

index-185_1.png

index-315_1.png

index-249_1.png

